
AD-A252 548

TECHNICAL REPORT RD-GC-92-32

REAL TIME EXECUTIVE FOR MISSILE SYSTDIS
USER'S GUIDE i80386 C INTERFACE

Wanda M. Hughes and
Phillip R. Acuff
Guidance and Control Directorate
Research, Development, and Engineering Center

and

On-line Applications Research Corporation
3315 Memorial Parkway SW
Huntsville, AL 35801

DTIC
MAY 1992 ELECT9

FMedetc~o*a reroAIb 35898-5000

Approved for Public Release.

W- puIf a.I51

92-16547

SMI FORM 10l1, I AUG 85 PREVIOUS EDITION IS OBSOLETE

DESTRUCTION NOTICE

FOR CLASSIFIED DOCUMENTS, FOLIW THE PROCEDURES IN
DoD 5200.22-N. INDUSTRIAL SECURITY MANUAL, SECTION
11-19 OR DoD 5200.1-R, INFORMATION SECURITY PROGRAM
REGULATION, CHAPTER IX. FOR UNCLASSIFIED, LIMITED
DOCUMENTS, DESTROY BY ANY METHOD THAT WILL PREVENT
DISCLOSURE OF CONTENTS OR RECONSTRUCTION OF THE
DOCUMENT.

DISCLAIMER

THE FINDINGS IN THIS REPORT An NOT TO BE CONSTRUED
AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION
UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT
DOES NOT CONSTITUTE AN OFFICIAL ENDORSIMEN OR
APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR
SOFTWARE.

. • =,,,.,,,- . n= - - ,-..nunnn mnnum mn II u I

Real Time Executive for

Missile Systems

User's Guide

i80386 C Interface

Task Iiilzto

Redstone Arsenal, Alabama 35898-5254

Release 1.31
December 1991

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. OISTRI8UTION/AVAILABLITY OF REPORT

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Approved for Public Release

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

Technical Report RD-GC-92-32

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Guidance & Control Directorate (If applicable)
RD&E Center"

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Commander, U.S. Army Missile Command
ATTN: AMSMI-RD-GC-S
Redstone Arsenal, AL 35898-5254

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. jACCESSION NO.

11. TITLE (Include Security Classification)

Real Time Executive For Missile Systems User's Guide i80386 C Interface

12. PERSONAL AUTHOR(S)
Wanda M. Hughes, Phillip R. Acuff, and OAR Corp.
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) IS. PAGE COUNT
Final FROM 6/89 TO 1/92 1992, May 225

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP RTEMS, real-time, executive, heterogeneous, homogeneous,

multiprocessing, 80386, microprocessor, C language, runtime,
(Continued on page ii)

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This document is a detailed design manual for a real-time multiprocessor executive

which provides a high performance environment for embedded military applications including
such features as multitasking capabilities; homogeneous and heterogeneous multiprocessor
systems; time event-driven, priority-based, preemptive scheduling; intertask communication
and synchronization; responsive interrupt management; dynamic memory allocation; and a high
level of user configurability. This executive, known as RTEMS (Real-Time Executive for
Missile Systems), was originally developed in an effort to eliminate many of the mcjor
drawbacks of the Ada programming language. RTUMS is based on the RTEID (now ORKID) proposed
standard. The code is Government owned, so no licensing fees are necessary. The executive
is written using the 'C' programming language with a small amount of assembly language code.
The code was developed as a linkable and/or ROMable library with the Ada programming
language. Initially RTEMS was developed for the Motorola 68000 family of processors.

(Continued on page ii)

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY C'LASSIFICATION

(MUNCLASSIFIED/UNLIMITED E] SAME AS RPT. 0] DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL
Wanda M. Hughes (205) 876-4484 1AMSMI-RD-GC-S

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

.

BLOCK 18 (Cont'd): scheduling, directive, multitasking, event-driven,

priority-based, preemptive, scheduling, intertask

communication, synchronization, dynamic memory alloca-

tion, user configurable, kernel, embedded, semaphore,
events, interrupt, regions, segments, I/O, messages,

user extendable, object oriented

BLOCK 19 (Cont'd): It has been ported to the Intel 80386 and 80960 families.

Other processor ports are planned for the future. This
manual describes the implementation of RTEMS for the

i80386 microprocessor for applications using the 'C'

programming language and describes the user interface
and run-time behavior. Related documents include:
Real Time Executive for Missile Systems i80386 Ada
Interface, Real Time Executive for Missile Systems i80386

Timing Document, and Real Time Executive for Missile
Systems i80386 Assembly Interface. RTEMS documentation

and code is available for the Motorola 68000 family,

and the Intel 80386 and 80960 family of processors.

Aceession For

NTIS GRA&I
DTIC TAB
Uxinn o .nced 0
Justi f icat io

By
Distribution/

Availability Cd0e

Avail and/or

Dist Speoita

Preface

In recent years, the cost required to develop a software product has increased
significantly while the target hardware costs have decreased. Now a larger
portion of money is expended in developing, using, and maintaining software.
The trend in computing costs is the complete dominance of software over
hardware costs. Because of this, it is necessary that formal disciplines be
established to increase the probability that software is characterized by a high
degree of correctness, maintainability, and portability. In addition, these
disciplines must promote practices that aid in the consistent and orderly
development of a software system within schedule and budgetary constraints.
To be effective, these disciplines must adopt standards which channel individual
software efforts toward a common goal.

The push for standards in the software development field has been met with
various degrees of success. The Microprocessor Operating Systems Interfaces
(MOSI) effort has experienced only limited success. As popular as the UNIX
operating system has grown, the attempt to develop a standard interface
definition to allow portable application development has only recently begun to
produce the results needed in this area. Unfortunately, very little effort has
been expended to provide standards addressing the needs of the real-time
community. Several organizations have addressed this need during the past
several years.

The Real Time Executive Interface Definition (RTEID) was developed by
Motorola with technical input from Software Components Group. RTEID was
adopted by the VMEbus International Trade Association (VITA) as a baseline

ii,

draft for their proposed standard multiprocessor, real-time executive interface,
Open Real-Time Kernel Interface Definition (ORKID). These two groups are
currently working together with the IEEE P1003.4 committee to insure that
the functionality of their proposed standards is adopted as the real-time
extensions to POSIX.

This emerging standard defines an interface for the development of real- time
software to ease the writing of real-time application programs that are directly
portable across multiple real-time executive implementations. This interface
includes both the source code interfaces and run-time behavior as seen by a
real-time application. It does not include the details of how a kernel implements
these functions. The standard's goal is to serve as a complete definition of
external interfaces so that application code that conforms to these interfaces
will execute properly in all real-time executive environments. With the use of
a standards compliant executive, routines that acquire memory blocks, create
and manage message queues, establish and use semaphores, and send and
receive signals need not be redeveloped for a different real-time environment
as long as the new environment is compliant with the standard. Software
developers need only concentrate on the hardware dependencies of the real-time
system. Furthermore, most hardware dependencies for real-time applications
can be localized to the device drivers.

A compliant executive provides simple and flexible real-time multiprocessing.
It easily lends itself to both tightly-coupled and loosely-coupled configurations
(depending on the system hardware configuration). Objects such as tasks,
queues, events, signals, semaphores, and memory blocks can be designated as
global objects and accessed by any task regardless of which processor the object
and the accessing task reside.

The acceptance of a standard for real-time executives will produce the same
advantages enjoyed from the push for UNIX standardization by AT&T's System
V Interface Definition and IEEE's POSIX efforts. A compliant multiprocessing
executive will allow close coupling between UNIX systems and real-time
executives to provide the many benefits of the UNIX development environment
to be applied to real-time software development. Together they provide the
necessary laboratory environment to implement real-time, distributed,
embedded systems using a wide variety of computer architectures.

A study was completed in 1988, within the Research, Development, and
Engineering Center, U.S. Army Missile Command, which compared the various
aspects of the Ada programming language as they related to the application of
Ada code in distributed and/or multiple processing systems. Several critical
conclusions were derived from the study. These conclusions have a major
impact on the way the Army develops application software for embedded

iv

applications. These impacts apply to both in-house software development and
contractor developed software.

A conclusion of the analysis, which has been previously recognized by other
agencies attempting to utilize Ada in a distributed or multiprocessing
environment, is that the Ada programming language does not adequately
support multiprocessing. Ada does provide a mechanism for multi-tasking,
however this capability exists only for a single processor system. The language
also does not have inherent capabilities to access global named variables, flags
or program code. These critical features are essential in order for data to be
shared between processors. However, these drawbacks do have workarounds
which are sometimes awkward and defeat the intent of software maintainability
goals.

Another conclusion drawn from the analysis, was that the run time executives
being delivered with the Ada compilers were too slow and inefficient to be used
in modern missile systems. A run time executive is the core part of the run time
system code, or operating system code, that controls task scheduling,
input/output management and memory management. Traditionally, whenever
efficient executive (also known as kernel) code was required by the application,
the user developed in-house software. This software was usually written in
assembly language for optimization.

Because of this shortcoming in the Ada programming language, software
developers in research and development and contractors for project managed
systems, are mandated by technology to purchase and utilize off-the-shelf third
party kernel code. The contractor, and eventually the Government, must pay
a licensing fee for every copy of the kernel code used in an embedded system.

The main drawback to this development environment is that the Government
does not own, nor has the right to modify code contained within the kernel.
V&V techniques in this situation are more difficult than if the complete source
code were available. Responsibility for system failures due to faulty software is
yet another area to be resolved under this environment.

The Guidance and Control Directorate began a software development effort to
address these problems. A project to develop an experimental run time kernel
was begun that will eliminate the major drawbacks of the Ada programming
language mentioned above. The Real Time Executive for Missile Systems
(RTEMS) provides full capabilities for management of tasks, interrupts, time,
and multiple processors in addition to those features typical of generic operating
systems. The code is Government owned, so no licensing fees are necessary.
The code was developed as a inkable and/or ROMable library with the Ada
programming language. Initially the library code was developed on the Motorola
68000 family of processors using the 'C' programming language as the

V

development language. It has since been ported to the Intel 80386 family.
Other language interfaces and processor families, including RISC, are planned
in the future.

The final RTEMS product will be capable of handling either homogeneous or
heterogeneous systems. The kernel will automatically compensate for
architectural differences (byte swapping, etc.) between processors. This will
allow a much easier transition from one processor family to another without a
major system redesign.

Since the proposed standards are still in draft form, RTEMS cannot and does
not claim compliance. However, the status of the standard is being carefully
monitored to guarantee that RTEMS provides the functionality specified in the
standard. Once approved, RTEMS will be made compliant.

This document is a detailed design guide for a functionally compliant real- time
multiprocessor executive. It describes the user interface and run- time behavior
of RTEMS.

vi

Table of Contents

1 Overview 1

1.1 Introduction1
1.2 Real-time Application Systems 1
1.3 Real-time Executive 2
1.4 RTEMS Application Architecture. 3
1.5 RTEMS Internal Architecture 4
1.6 User Customnization and Extensibility. 5
1.7 Portability.
1.8 Memory Requirements.5
1.9 Audience.6
1 .10 Conventions. 6
1.11 Manual Organization. 7

2 Key Concepts 9

2.1 Introduction.9
2.2 Objects 9
2.3 Communication and Synchronization.11
2.4 Time. 11
2.5 Memory Management 12

3 Initialization Manager. 13

3.1 Introduction.13
3.2 Background. 13
3.2.1 Initialization Tasks. 13
3.2.2 The System Initialization Task. 14
3.2.3 The Idle Task14
3.2.4 Initialization Manager Failure.14
3.3 Operations 15
3.3.1 Initializing RTEMS.15
3.4 Directives. 15
3.4.1 INITEXEC - Initialize RTEMS.16

4 Task Manager 17

4.1 Introduction.17

4.2 Background 18

Vii

4.2.1 Task Definition. 18
4.2.2 Task Control Block 18
4.2.3 Task States. 19
4.2.4 Task Priority. 19
4.2.5 Task Mode 20
4.2.6 Accessing Task Arguments 21
4.2.7 Floating Point Considerations 21
4.2.8 Building an Attribute Set, Mode, or Mask. 22
4.3 Operations 22
4.3.1 Creating Tasks. 22
4.3.2 Obtaining Task INs.. 23
4.3.3 Starting and Restarting Tasks 23
4.3.4 Suspending and Resuming Tasks. 24
4.3.5 Changing Task Priority. 24
4.3.6 Changing Task Mode 24
4.3.7 Notepad Locations 24
4.3.8 Task Deletion 25
4.4 Directives. 25
4.4.1 T-CREATE - Create a task. 26
4.4.2 T-IDENT - Get ID of a task. 28
4.4.3 T..START - Start a task 29
4.4.4 T-RESTART - Restart a task 30
4.4.5 T-DELETE - Delete a task. 31
4.4.6 T-SUSPEND - Suspend a task 32
4.4.7 T-RESUME - Resume a task. 33
4.4.8 T-SETPRI - Set task priority 34
4.4.9 T-MODE - Change current task's mode. 35
4.4.10 T-GETNOTE - Get task notepad entry. 37
4.4.11 TLSETNOTE - Set task notepad entry. 38

5 Interrupt Manager. 39

5.1 Introduction. 39
5.2 Background. 39
5.2.1 i80386 Interrupt Processing 39
5.2.2 Mapping Processor Interrupt Levels 40
5.2.3 Disabling of Interrupts by RTEMS 40
5.2.4 Format of an ISR 41
5.2.5 Directives Allowed from an ISR 42
5.3 Operations 42

viii

5.3.1 Entering an ISR. 42
5.3.2 Exiting an ISR 43
5.4 Directives. 43
5.4.1 I-ENTER - Enter an ISR.44
5.4.2 I-RETURN - Return from an ISR.45

6 Time Manager 47

6.1 Introduction.47
6.2 Background. 48
6.2.1 Required Si5'pr 48
6.2.2 Time and £,6-, Data Structure48
6.2.3 Timer Types. 48
6.2.4 Timeslicing 49
6.3 Operations 49
6.3.1 Announcing a Tick49
6.3.2 Setting and Obtaining the Time.50
6.3.3 Using a Sleep Timer.50
6.3.4 Using an Event Timer50
6.3.5 Canceling a Timer. 51
6.4 Directives. 51
6.4.1 TM ISET - Set system date and time52
6.4.2 TMVIGET - Get system date and time 53
6.4.3 TMVIWKAFTER - Wake up after interval 54
6.4.4 TMVIWKWHEN - Wake up when specified. 55
6.4.5 TMVIEVAFTER - Send event set after interval. 56
6.4.6 TMVIEVWHEN - Send event set when specified. 57
6.4.7 TMVIEVEVERY - Send periodic event set. 58
6.4.8 TMVICANCEL - Cancel timer event 59
6.4.9 TM ITICK - Announce a clock tick60

7 Semaphore Manager. 61

7.1 Introduction.61
7.2 Background. 61
7.2.1 Building an Attribute Set62
7.3 Operations 63
7.3.1 Creating a Semaphore.63
7.3.2 Obtaining Semaphore IDs. 63
7.3.3 Acquiring a Semaphore. 63
7.3.4 Releasing a Semaphore64

ix

7.3.5 Semaphore Deletion. 64
7.4 Directives. 64
7.4.1 SM CREATE - Create a semaphore 65
7.4.2 SMJIDENT - Get ID of a semaphore 67
7.4.3 SM-DELETE - Delete a semaphore. 68
7.4.4 SMP - Acquire a semaphore. 69
7.4.5 %OM..V - Release a semaphore. 71

8 Message Manager 73

8.1 Introduction. 73
8.2 Background. 74
8.2.1 Messages 74
8.2.2 Message Queues. 74
8. 1. 3 Building an Attribute Set 74
8.3 Operations 74
8.3.1 Creating a Message Queue 74
8.3.2 Obtaining Message Queue INs.. 75
8.3.3 Receiving a Message 75
8.3.4 Sending a Message. 75
8.3.5 Broadcasting a Message 76
8.3.6 Message Queue Deletion 76
8.4 Directives. 76
8.4.1 OQCREATE - Create a queue. 77
8.4.2 QJIDENT - Get ID of a queue. 79
8.4.3 QDELETE - Delete a queue. 80
8.4.4 Q-SEND - Put message at rear of a queue 81
8.4.5 QJJRGENT - Put message at front of a queue 82
8.4.6 Q-BROADCAST - Broadcast N messages to a queue. 83
8.4.7 Q-RECEIVE - Receive message from a queue 84
8.4.8 Q..FLUSH - Flush all messages on a queue. 86

9 Event Manager 87

9.1 Introduction. 87
9.2 Background. 87
9.2.1 Event Sets 87
9.2.2 Building an Event Set or Condition. 88
9.2.3 Buiding a Flag. 88
9.3 Operations 89
9.3.1 Sending an Event Set 89

x

9.3.2 Receiving an Event Set.89
9.3.3 Determining the Pending Event Set 9
9.4 Directives. 9
9.4.1 EV-SEND - Send event set to a task 91
9.4.2 EV RECEIVE - Receive event condition 92

10 Signal Manager. 95

10.1 Introduction.95
10.2 Background. 95
10.2.1 Definitions95
10.2.2 A Comparison of ASRs and ISRs96
10.2.3 Building a Signal Set. 96
10.2.4 Building a Mode 97
10.3 Operations 97
10.3.1 Establishing an ASR.97
10.3.2 Sending a Signal Set. 98
10.3.3 Entering an ASR 98
10.3.4 Returning from an ASR.98
10.3.5 Format of an ASR. 98
10.4 Directives. 99
10.4.1 AS-.CATCH - Establish an ASR.. 100
10.4.2 AS-SEND - Send signal set to a task 101
10.4.3 AS-ENTER - Enter an ASR. 102
10.4.4 AS-RETURN - Return from an ASR. 103

11 Partition Manager 105

11.1 Introduction.105
11.2 Background. 105
11.2.1 Definitions. 105
11.2.2 Building an Attribute Set106
11.3 Operations 106
11.3.1 Creating a Partition 106
11.3.2 Obtaining Partition l~s 106
11.3.3 Arquiring a Buffer. 106
11.3.4 Releasing a Buffer. 107
11.3.5 Deleting a Partition107
11.4 Directives. 107
11.4.1 PT CREATE - Create a partition.108
11.4.2 PT-IDENT - Get ID of a partition.110

xi

11.4.3 PTLDELETE - Delete a partition 11
11.4.4 PT-GETBUF - Get buffer from a partition. 112
11.4.5 PTRETBUF - Return buffer to a partition 1 13

12 Region Manager115

12.1 Introduction. 115
12.2 Background. 115
12.2.1 Definitions '* *' ' *115
12.2.2 Building an Attribute Set 116
12.3 Operations 116
12.3.1 Creating a Region. 116
12.3.2 Obtaining Region lNs.. 117
12.3.3 Acquiring a Segment. 117
12.3.4 Releasing a Segment. 117
12.3.5 Deleting a Region. 118
12.4 Directives. 118
12.4.1 RN-CREATE - Create a region 119
12.4.2 RNJIDENT - Get ID of a region 121
12.4.3 RN-DELETE - Delete a region. 122
12.4.4 RN-GETSEG - Get segment from a region 123
12.4.5 RN-RETSEG - Return segment to a region 125

13 Dual-Ported Memory Manager 127

13.1 Introduction. 127
13.2 Background. 127
13.3 Operations 128
13.3.1 Creating a Port. 128
13.3.2 Obtaining Port lUs. 128
13.3.3 Converting an Address. 128
13.3.4 Deleting a DPMVA Port 129
13.4 Directives. 129
13.4.1 OP CREATE - Create a port 130
13.4.2 OP-IDENT - Get ID of a port 131
13.4.3 DP-DELETE - Delete a port 132
13.4.4 DP-21NTERNAL - Convert external to internal address. 133
13.4.5 DP_2EXTERNAL - Convert internal to external address. 134

Xii

14 1/0 Manager................................. 135

14.1 Introduction.135
14.2 Background. 135
14.2.1 Device Driver Table 135
14.2.2 Major and Minor Device Numbers 136
14.2.3 Device Driver Environment. 136
14.2.4 Device Driver Interface 137
14.2.5 Device Driver Initialization 137
14.3 Operations 138
14.4 Directives. 138
14.4.1 DE-INIT - Initialize a device driver139
14.4.2 DE-OPEN - Open a device. 140
14.4.3 DE-CLOSE - Close a device 141
14.4.4 DE-READ - Read from a device.142
14.4.5 DE-WRITE - Write to a device. 143
14.4.6 DE-CNTRL - Special device services 144

15 Fatal Error Manager 145

15.1 Introduction.145
15.2 Background 145
15.3 Operations 146
15.4 Announcing a Fatal Error 146
15.5 Directives. 146
15.5.1 KFATAL - Invoke the fatal error handler.147

16 Scheduling Concepts. 149

16.1 Introduction149
16.2 Scheduling Mechanisms150
16.2.1 Task Priority. 150
16.2.2 Preemption 150
16.2.3 Timeslicing 151
16.2.4 Manual Round-Robin. 151
16.2.5 Dispatching Tasks. 151
16.3 Task State Transitions 152

17 Board Support Packages 157

17.1 Introduction.157

17.2 System Reset and Initialization 157

xiii

17.2.1 -SEGMENT USAGE............................... 159

17.2.2 Allowing for Interrupt Stack Usage. 160

18 User Extensions. 161

18.1 Introduction. 161
18.2 TOREATE Extension. 162
18.3 TSTART Extension............................... 162
18.4 TRESTART Extension 162
18.5 TDELETE Extension. 163
18.6 TSWITCH Extension. 163
18.7 TASKEXITTED Error Extension 163
18.8 FATAL Error Extension. 164
18.9 TCB Extension. 164

19 Configuring a System. 165

19.1 Configuration Table 165
19.2 Initialization Task Table. 167
19.3 Driver Address Table. 168
19.4 User Extensions Table 169
19.5 Multiprocessor Configuration Table 171
19.6 Multiprocessor Communications Interface Table. 172
19.7 Determining Memory Requirements 173
19.7.1 Sizing the RTEMS RAM Workspace 174

20 Multiprocessing Manager 175

20.1 Introduction. 175
20.2 Background. 176
20.2.1 Nodes. 176
20.2.2 Global Objects. 176
20.2.3 Global Object Table 177
20.2.4 Remote Operations 177
20.2.5 Proxies. 178
20.2.6 Multiprocessor Configuration Table. 179
20.3 Multiprocessor Communications Interface Layer. 179
20.3.1 INIT. 180
20.3.2 GETPKT 180
20.3.3 RETPKT 181
20.3.4 RECEIVE. 181

Xiv

20.3.5 SEND181
20.3.6 Supporting Heterogeneous Environments 182
20.4 Operations 183
20.4.1 Announcing a Packet183
20.5 Directives. 183
20.5.1 MP-ANNOUNCE - Announce the arrival of a packet. 184

A Memory Requirements

A.1 Data Space Requirements. 1
A.2 Minimum and Maximum Code Space Requirements. 1
A.3 Code Space Worksheet2
A.4 RTEMS RAM Workspace Worksheet 3

B DIRECTIVE STATUS CODES 1

C HEADER FILES1

0.1 Header File Usage. 1
C.2 rtems.h1

D EXAMPLE APPLICATION. 1

E GLOSSARY.

xv/(xvi blank)

1

iOverview
1.1 Introduction

RTEMS, Real-Time Executive for Missile System, is a real-time executive
(kernel) which provides a high performance environment for embedded military
applications including the following features:

" multitasking capabilities

* homogeneous and heterogeneous multiprocessor systems

" event-driven, priority-based, preemptive scheduling

" intertask communication and synchronization

* responsive interrupt management

* dynamic memory allocation

" high level of user configurability

This manual describes the implementation of RTEMS for the target
microprocessor for applications using the C programming language.

1.2 Real-time Application Systems

Real-time application systems are a special class of computer applications. They
have a complex set of characteristics that distinguish them from other software
problems. Generally, they must adhere to more rigorous requirements. The
correctness of the system depends not only on the results of computations, but
also on the time at which the results are produced. The most important and
complex characteristic of real-time application systems is that they must receive
and respond to a set of external stimuli within rigid and critical time constraints.

1

Systems can be buried by an avalanche of interdependent, asynchronous or
cyclical event streams.

Another distinguishing requirement of real-time application systems is the
ability to coordinate or manage a large number of concurrent activities. Since
software is a synchronous entity, this presents special problems. One
instruction follows another in a repeating synchronous cycle. Even though
mechanisms have been developed to allow for the processing of external
asynchronous events, the software design efforts required to process and
manage these events and tasks are growing more complicated.

The design process is complicated further by spreading this activity over a set
of processors instead of a single processor. The challenges associated with
designing and building real-time application systems become very complex when
multiple processors are involved. New requirements such as interprocessor
communication channels and global resources that must be shared between
competing processors are introduced. The ramifications of multiple processors
complicate each and every characteristic of a real-time system.

1.3 Real-time Executive

Fortunately, real-time operating systems or real-time executives serve as a
cornerstone on which to build the application system. A real-time multitasking
executive allows an application to be cast into a set of logical, autonomous
processes or tasks which become quite manageable. Each task is internally
synchronous, but different tasks execute independently, resulting in an
asynchronous processing stream. Tasks can be dynamically paused for many
reasons resulting in a different task being allowed to execute for a period of time.
The executive also provides an interface to other system components such as
interrupt handlers and device drivers. System components may request the
executive to allocate and coordinate resources, and to wait for and trigger
synchronizing conditions. The executive system calls effectively extend the
CPU instruction set to support efficient multitasking. By causing tasks to travel
through well- defined state transitions, system calls permit an application to
demand- switch between tasks in response to real-time events.

By proper grouping of responses to stimuli into separate tasks, a system can now
asynchronously switch between independent streams of execution, directly
responding to external stimuli as they occur. This allows the system design to
meet critical performance specifications which are typically measured by
guaranteed response time and transaction throughput. The multiprocessor
extensions of RTEMS provide the features necessary to manage the extra
requirements introduced by a system distributed across several processors. It
removes the physical barriers of processor boundaries from the world of the

2

Application Dependent Software

Standard Application Components

!iiiiiiii~i!i i~iiiii''"RTEM

i';i;' i::iExecutive

Figure 1-1 RTEMS Application Architecture

system designer, enabling more critical aspects of the system to receive the
required attention. Such a system, based on an efficient real-time,
multiprocessor executive, is a more realistic model of the outside world or
environment for which it is designed. As a result, the system will always be
more logical, efficient, and reliable.

By using the directives provided by RTEMS, the real-time applications
developer is freed from the problem of controlling and synchronizing multiple
tasks and processors. In addition, one need not develop, test, debug, and
document routines to manage memory, pass messages, or provide mutual
exclusion. The developer is then able to concentrate solely on the application.
By using standard software components, the time and cost required to develop
sophisticated real-time applications is significantly reduced.

1.4 RTEMS Application Architecture

One important design goal of RTEMS was to provide a bridge between two
critical layers of typical real-time systems. As shown in Figure 1-1, RTEMS
serves as a buffer between the project dependent application code and the target
hardware. Most hardware dependencies for real-time applications can be
localized to the low level device drivers. The RTEMS I/O interface manager
provides an efficient tool for incorporating these hardware dependencies into

3

TIME

EVENT 1 DUAL PORTEDRTEMS MEMORY

MESSAGE COR PARTITION

~FATAL ERROR &

SIGNAL INTERRUPT

SEMAPHORE 1/0

Figure 1-2 RTEMS Internal Architecture

the system while simultaneously providing a general mechanism to the
application code that accesses them. A well designed real-time system can
benefit from this architecture by building a rich library of standard application
components which can be used repeatedly in other real-time projects.

1.5 RTEMS Internal Architecture

As illustrated in Figure 1-2, RTEMS can be viewed as a set of components that
work in harmony to provide a set of services to a real-time application system.
The executive interface presented to the application is formed by grouping
directives into logical sets called resource managers. Functions utilized by
multiple managers such as scheduling, dispatching, and object management are
provided in the executive core. Together these components provide a powerful
run time environment that promotes the development of efficient real-time
application systems. Subsequent chapters present a detailed description of the
capabilities provided by each of the following RTEMS managers:

* initialization * signal

" task 0 partition

* interrupt * region

4

* time * dual ported memory

" semaphore * I/0

* message * fatal error

" event

The C Interface Library component is a collection of routines which allow C
application programs to invoke RTEMS directives. This extends the standard
C language to include the real-time features provided by RTEMS without
modifying the C compiler. Only three RTEMS directives, related to interrupts
(tenter and i return) and asynchronous signals (asreturn), cannot be accessed
from C due to their processor dependent nature.

1.6 User Customization and Extensibility

As thirty-two bit microprocessors have decreased in cost, they have become
increasingly common in a variety of embedded systems. A wide range of custom
and general-purpose processor boards are based on various thirty-two bit
processors. RTEMS was designed to make no assumptions concerning the
characteristics of individual microprocessor families or of specific support
hardware. In addition, RTEMS allows the system developer a high degree of
freedom in customizing and extending its features.

RTEMS assumes the existence of a supported microprocessor and sufficient
memory for both RTEMS and the real-time application. Board dependent
components such as clocks, interrupt controllers, or I/O devices can be easily
integrated with RTEMS. The customization and extensibility features allow
RTEMS to efficiently support as many environments as possible.

1.7 Portability

The issue of portability was the major factor in the creation of RTEMS. Since
RTEMS is designed to isolate the hardware dependencies in the specific board
support packages, the real-time application should be easily ported to any other
processor. The use of RTEMS in conjunction with the C Interface Library
allows the development of real-time applications which can be completely
independent of a particular microprocessor architecture.

1.8 Memory Requirements

Since memory is a critical resource in many real-time embedded systems,
RTEMS was specifically designed to allow unused managers to be excluded from
the run-time environment. This allows the application designer the flexibility

5

to tailor RTEMS to most efficiently meet system requirements while still
satisfying even the most stringent memory constraints. As result, the size of
the RTEMS executive is application dependent. Appendix A provides a
worksheet for calculating the memory requirements of a custom RTEMS
run-time environment. The following managers may be optionally excluded:

* signal * partition

" region 0 time

" dual ported memory o semaphore

* I/0 message

* event

RTEMS utilizes memory for both code and data space. Although RTEMS' data
space must be in RAM, its code space can be located in either ROM or RAM.

1.9 Audience

This manual was written for experienced real-time software developers.
Although some background is provided, it is assumed that the reader is familiar
with the concepts of task management as well as intertask communication and
synchronization. Since directives, user related structures, and examples are
presented in C, a basic understanding of the C programming language is
required. A working knowledge of the target processor is helpful in
understanding some of RTEMS' features. A thorough understanding of the
executive cannot be obtained without studying the entire manual because many
of RTEMS' concepts and features are interrelated. Experienced RTEMS users
will find that the manual organization facilitates its use as a reference document.

1.10 Conventions

The following conventions are used in this manual:

" Significant words or phrases as well as all directive names are
printed in bold type.

* Items in bold capital letters are constants defined by RTEMS.
Each language interface provided by RTEMS includes a file
containing the standard set of constants, data types, and struc-
ture/record definitions which can be incorporated into the user
application.

" A number of type definitions are provided by RTEMS and can
be found in rtems.h.

" The characters "Ox" preceding a number indicates that the
number is in hexadecimal format. Any other numbers are
assumed to be in decimal format.

* The ampeisand character (&) preceding a symbol indicates
that the address of the symbol is passed to the called reutine
instead of the value itself

1.11 Manual Organization

This first chapter has presented the introductory and background material for
the RTEMS executive. The remaining chapters of this manual present a
detailed description of RTEMS and the environment, including run time
behavior, it creates for the user.

Chapter 2: Key Concepts: presents an introduction to the ideas which
are common across multiple RTEMS managers.

Chapters 3 - 15: Managers and Directives: these chapters provide a detailed
discussion of each RTEMS manager and the directives
which it provides. The presentation format for each
directive includes the following sections:

* Callingsequence

* Input parameters

* Output parameters

* Directive status codes

* General description

* Notes

Chapter 16: Scheduling Concepts: details the RTEMS scheduling
algorithm and task state transitions.

Chapter 17: Board Support Packages: defines the functionality required
of user-supplied board support packages.

Chapter 18: User Extensions: shows the user how to extend RTEMS to
incorporate custom features.

7

Chapter 19: Configuring a System: details the process by which one
tailors RTEMS for a particular single-processor or
multiprocessor application.

Chapter 20: Multiprocessing presents a conceptual overview of the
multiprocessing capabilities provided by RTEMS and
describes the Multiprocessing Communications Interface
Layer.

Appendix A RTEMS Memory Requirements Worksheets: provides a
worksheet for calculating the code and data space
requirements for a custom configuration of RTEMS.

Appendix B: Directive Status Codes: provides a definition of each of the
directive status codes referenced in this manual. These
definitions are also provided in the user include file rtems.h.

Appendix C: Definition File: describes and lists the RTEMS provided
constants, data types, and structure/record definitions.

Appendix D: Example RTEMS Application: provides a template for
simple RTEMS applications.

Appendix E: Glossary: defines terms used throughout this manual.

2

Key Concepts

2.1 Introduction

The facilities provided by RTEMS are built upon a foundation of very powerful
concepts. These concepts must be understood before the application developer
can efficiently utilize RTEMS. The purpose of this chapter is to familiarize one
with these concepts.

2.2 Objects

RTEMS provides directives which oan be used to dynamically create, delete, and
manipulate a set of predefined object types. These types include tasks, message
queues, semaphores, memory regions, memory partitions, and timers. The
object-oriented nature ot RTEMS encourages the creation of modular
applications built upon re-usable 'building block" routines.

All objects are created on the local node as required by the application and have
an RTEMS assigned ID. All objects except timers have a user-assigned name.
Although a relationship exists between an object's name and its RTEMS
assigned ID, the name and ID are not identical. Object names are completely
arbitrary and selected by the user as a meain-gful "tag" which may commonly
reflect the object's use in the application. Conversely, object IDs are designed
to facilitate efficient object manipulation by the executive.

An object name is an unsigned thirty-two bit entity associated with the object
by the user. Although not required by RTEMS, object names are typically
composed of four ASCII characters which help identify that object. For example,
a task which causes a light to blink might be called "LITE". On the other hand,
if an application requires one-hundred tasks, it would be difficult to assign
meaningful ASCII names to each task. A more convenient approach would be
to name them the binary values one through one-hundred, respectively.

9

31 16 15 0

Node Number Object Index

Figure 2-1 Object ID Composition

An object ID is a unique unsigned thirty-two bit entity composed of two parts.
The most significant sixteen bits are the number of the node on which this object
was created. The node number is always one (1) in a single processor system.
The least significant sixteen bits form an identifier within a particular object
type. This identifier, called the object index, ranges in value from 1 to the
maximum number of objects configured for this object type.

The two components of an object ID make it possible to quickly locate any object
in even the most complicated multiprocessor system. Object ID's are associated
with an object by RTEMS when the object is created and the corresponding ID
is returned by the appropriate object create directive. The object ID is required
as input to all directives involving objects, except those which create an object
or obtain the ID of an object.

The object identification directives can be used to dynamically obtain a
particular object's ID given its name. This mapping is accomplished by
searching the name table associated with this object type. If the name is
non-unique, then the ID associated with the first occurrence of the name will
be returned to the application. Since object IDs are returned when the object
is created, the object identification directives are not necessary in a properly
designed single processor application.

An object control block is a data structure defined by RTEMS which contains
the information necessary to manage a particular object type. For efficiency
reasons, the format of each object type's control block is different. However,
many of the fields are similar in function. The number of each type of control
block is application dependent and determined by the values specified in the
user's Configuration Table. An object control block is allocated at object create
time and freed when the object is deleted. With the exception of user extension
routines, object control blocks are not directly manipulated by user applications.

10

2.3 Communication and Synchronization

In real-time multitasking applications, the ability for cooperating execution
threads to communicate and synchronize with each other is imperative. A
real-time executive should provide an application with the following capabilities:

* Data transfer between cooperating tasks

" Data transfer between tasks and ISRs

" Synchronization of cooperating tasks

" Synchronization of tasks and ISRs

Most RTEMS managers can be used to provide some form of communication
and/or synchronization. However, managers dedicated specifically to
communication and synchronization provide well established mechanisms
which directly map to the application's varying needs. This level of flexibility
allows the application designer to match the features of a particular manager
with the complexity of communication and synchronization required. The
following managers were specifically designed for communication and
synchronization:

* Semaphore * Event

" Message * Signal

The semaphore manager supports mutual exclusion involving the
synchronization of access to one or more shared user resources. The message
manager supports both communication and synchronization, while the event
manager primarily provides a high performance synchronization mechanism.
The signal manager supports only asynchronous communication and is typically
used for exception handling.

2.4 Time

The development of responsive real-time applications requires an
understanding of how RTEMS maintains and supports time-related operations.
The basic unit of time in RTEMS is known as a tick. The frequency of clock
ticks is completely application dependent and determines the granularity and
accuracy of all interval and calendar time operations.

By tracking time in units of ticks, RTEMS is capable of supporting interval
timing functions such as task delays, timeouts, timeslicing, and the delayed
posting of events. An interval is defined as a number of ticks relative to the

11

current time. For example, when a task delays for an interval of ten ticks, it is
implied that the task will not execute until ten clock ticks have occurred.

A characteristic of interval timing is that the actual interval period may be a
fraction of a tick less than the interval requested. This occurs because the time
at which the delay timer is set up occurs at some time between two clock ticks.
Therefore, the first countdown tick occurs in less than the complete time
interval for a tick. This can be a problem if the clock granularity is large.

Interval timing is not sufficient for the many applications which require that
time be kept in wall time or true calendar form. Consequently, RTEMS
maintains the current date and time. This allows selected time operations to
be scheduled at an actual calendar date and time. For example, a task could
request to delay until midnight on New Year's Eve before lowering the ball at
Times Square.

Obviously, the time manager's directives cannot operate without some external
mechanism which provides a periodic clock tick. This clock tick is typically
provided by a real time clock or counter/timer device.

2.5 Memory Management

RTEMS memory management facilities can be grouped into two classes:
dynamic memory allocation and address translation. Dynamic memory
allocation is required by applications whose memory requirements vary through
the application's course of execution. Address translation is needed by
applications which share memory with another CPU or an intelligent
Input/Output processor. The following RTEMS managers provide facilities to
manage memory:

" Regon

* Dual Ported Memory

" Partition

RTEMS memory management features allow an application to create simple
memory pools of fixed size buffers and/or more complex memory pools of
variable siz3 segments. The partition manager provides directives to manage
and maintain pools of fixed size entities such as resource control blocks.
Alternatively, the region manager provides a more general purpose memory
allocation scheme that supports variable size blocks of memory which are
dynamically obtained and freed by the application. The dual-ported memory
manager provides executive support for address translation between internal
and external dual-ported RAM address space.

12

3

Initialization
Manager

3.1 Introduction

The initialization manager is responsible for initiating RTEMS, creating and
starting all configured initialization tasks, and for invoking the initialization
routine for each user-supplied device driver. In a multiprocessor configuration,
this manager also initializes the interprocessor communications layer. The
directive provided by the initialization manager is:

Name Directive Description

init exec Initialize RTEMS

3.2 Background

3.2.1 Initialization Tasks

Initialization task(s) are the mechanism by which RTEMS transfers initial
control to the user's application. Initialization tasks differ from other
application tasks in that they are defined in the Initialization Task Table and
automatically created and started by RTEMS as part of its initialization
sequence. Since the initialization tasks are scheduled using the same algorithm
as all other RTEMS tasks, they must be configured at a priority and mode which
will insure that they will complete execution before other application tasks
execute. Although there is no upper limit on the number of initialization tasks,
an application is required to define at least one.

13

A typical initialization task will create and start the static set of application
tasks. It may also create any other objects used by the application. Initialization
tasks which only. perform initialization should delete themselves upon
completion to free resources for other tasks. Initialization tasks may transform
themselves into a "normal" application task. This transformation typically
involves changing priority and execution mode. RTEMS does not automatically
delete the initialization tasks.

3.2.2 The System Initialization Task

The System Initialization Task is responsible for initializing all device drivers.
As a result, this task has a higher priority than all other application tasks to
insure that no application tasks executes until all device drivers are initialized.
After device initialization in a single processor system, this task will delete itself.

In multiprocessor configurations, the System Initialization Task does not
delete itself after initializing the device drivers. Instead it transforms itself into
the Multiprocessing Server which initializes the Multiprocessor
Communications Interface layer, verifies multiprocessor system consistency,
and processes all requests from remote nodes.

3.2.3 The Idle Task

The Idle Task is the lowest priority task in all systems and executes only when
no other task is ready to execute. This task consists of an infinite loop and will
be preempted when any other task is made ready to execute.

3.2.4 Initialization Manager Failure

The k-fatal directive will be called from init-exec for any of the following
reasons:

* If no user initialization tasks are configured. At least one
initialization task must be configured to allow RTEMS to pass
control to the application at the end of the executive initializa-
tion sequence.

* If the starting address of the RTEMS RAM Workspace, sup-
plied by the application in the Configuration Table, is not
aligned on a four-byte boundary.

* If the size of the RTEMS RAM Workspace is not large enough
to initialize and configure the system.

14

* If multiprocessing is configured and the node entry in the
Multiprocessor Configuration Table is not between one and
the max-nodes entry.

* If any of the user initialization tasks cannot be created or
started successfully.

3.3 Operations

3.3.1 Initializing RTEMS

The init-exec directive is called by the board support package at the completion
of its initialization sequence. RTEMS assumes that the board support package
successfully completed its initialization activities. The initexec directive
completes the initialization sequence by performing the following actions:

" Initialize internal RTEMS variables;

* Allocate system resources;

* Create and start the System Initialization Task;

* Create and start the Idle Task;

* Create and start the user initialization task(s); and

* Initiate multitasking.

This directive MUST be called before any other RTEMS directives. The effect
of calling any RTEMS directives before init exec is unpredictable. Many of
RTEMS actions during initialization are based upon the contents of the
Configuration Table. For more information regarding the format and contents
of this table, please refer to the chapter Configuring a Single Processor System.

The final step in the initialization sequence is the initiation of multitasking.
When the scheduler and dispatcher are enabled, the highest priority, ready task
will be dispatched to run. Control will not be returned to the board support
package after multitasking is enabled.

3.4 Directives

This section details the initialization manager's directives. A subsection is
dedicated to each of this manager's directives and describes the calling sequence,
related constants, usage, and status codes.

15

3.4.1 INITEXEC - Initialize RTEMS

CALLING SEQUENCE:
void init-exec(conftbl

INPUT:
config-table *conftbl; /* configuration table pointer */

OUTPUT: NONE

DIRECTIVE STATUS CODES: NONE

DESCRIPTION:

This directive is called when the board support package has completed its
initialization to allow RTEMS to initialize the application environment based
upon the information in the Configuration Table.

NOTES:

This directive MUST be the first RTEMS directive called and it DOES NOT
RETURN to the caller.

This directive causes all nodes in the system to verify that certain configuration
parameters are the same as those of the local node. If an inconsistency is
detected, then a fatal error is generated.

16

4

Task Manager

4.1 Introduction

The task manager provides a comprehensive set of directives to create, delete,
and administer tasks. The directives provided by the task manager are:

Name Directive Description

t-create Create a task

tident Get ID of a task

t-start Start a task

t-restart Restart a task

t-delete Delete a task

t.suspend Suspend a task

tresume Resume a task

t-setpri Set task priority

t-mode Change current task's mode

t getnote Get task notepad entry

t setnote Set task notepad entry

17

4.2 Background

4.2.1 Task Definition

Many definitions of a task have been proposed in computer literature.
Unfortunately, none of these definitions encompasses all facets of the concept
in a manner which is operating system independent. Several of the more
common definitions are provided to enable each user to select a definition which
best matches their own experience and understanding of the tesk concept:

* the "'dispatchable" unit.

* the entity to which the processor is allocated.

" the atomic unit of a real-time, multiprocessor system.

* single threads of execution which concurrently compete for
resources.

" a sequence of closely related computations which can execute
concurrently with other computational sequences.

From RTEMS' perspective, a task is the smallest thread of execution which can
compete on its own for system resources. A task is manifested by the existence
of a task control block (TCB).

4.2.2 Task Control Block

The Task Control Block (TCB) is an RTEMS defined data structure which
contains all the information that is pertinent to the execution of a task. During
system initialization, RTEMS reserves a TCB for each task configured. A TCB
is allocated upon creation of the task and is returned to the TCB free list upon
deletion of the task.

The TCB's elements are modified as a result of system calls made by the
application in response to external and internal stimuli. TCBs are the only
RTEMS internal data structure that can be accessed by an application via user
extension routines. The TCB contains a task's name, ID, current priority,
current and starting states, execution mode, set of notepad locations, TCB user
extension pointer, scheduling control structures, as well as data required by a
blocked task.

A task's context is stored in the TCB when a task switch occurs. When the task
regains control of the processor, its context is restored from the TCB. When a

18

task is restarted, the initial state of the task is restored from the starting context

area in the task's TCB.

4.2.3 Task States

A task may exist in one of the following five states:

Task State Description

executing Currently scheduled to the CPU

ready May be scheduled to the CPU

blocked Unable to be scheduled to the CPU

dormant Created task that is not started

non-exist rz Uncreated or deleted task

Figure 4-1 Task States

An active task may occupy the executing, ready, blocked or dormant state,
otherwise the task is considered non-existent. One or more tasks may be active
in the system simultaneously. Multiple tasks communicate, synchronize, and
compete for system resources with each other via system calls. The multiple
tasks appear to execute in parallel, but actually each is dispatched to the CPU
for periods of time determined by the RTEMS scheduling algorithm. The
scheduling of a task is based on its current state and priority.

4.2.4 Task Priority

A task's priority determines its importance in relation to the other tasks
executing on the same processor. RTEMS supports 255 levels of priority ranging
from 1 to 255. Tasks of numerically smaller priority values are more important
tasks than tasks of numerically larger priority values. For example, a task at
priority level 5 is of higher privilege than a task at priority level 10. There is
no limit to the number of tasks assigned to the same priority.

Each task has a priority associated with it at all times. The initial value of this
priority is assigned at task creation time. The priority of a task may be changed
at any subsequent time.

19

Priorities are used by the scheduler to determine which ready task will be
allowed to execute. In general, the higher the priority of a task, the more likely
it is to receive processor execution time.

4.2.5 Task Mode

A task's mode is a combination of the following four components:

" preemption * ASR processing

* timeslicing * interrupt level

It is used to modify RTEMS' scheduling process and to alter the execution
environment of the task.

The preemption component allows a task to determine when control of the
processor is relinquished. If preemption is disabled (NOPREEMPT), the task
will retain control of the processor as long as it is in the ready state -- even if a
higher priority task is made ready. If preemption is enabled (PREEMPT) and
a higher priority task is made ready, then the processor will be taken away from
the current task immediately and given to the higher priority task.

The timeslicing component is used by the RTEMS scheduler to determine how
the processor is allocated to tasks of equal priority. If timeslicing is enabled
(TSLICE), then RTEMS will limit the amount of time the task can execute
before the processor is allocated to another ready task of equal priority. The
length of the timeslice is application dependent and specified in the
Configuration Table. If timeslicing is disabled (NOTSLICE), then the task will
be allowed to execute until a task of higher priority is made ready. If
NOPREEMPT is selected, then the timeslicing component is ignored by the
scheduler.

The asynchronous signal processing component is used to determine when
received signals are to be processed by the task. If signal processing is enabled
(ASR), then signals sent to the task will be processed the next time the task
executes. If signal processing is disabled (NOASR), then all signals received by
the task will remain posted until signal processing is enabled. This component
affects only tasks which have established a routine to process asynchronous
signals.

The interrupt level component is used to determine which interrupts will be
enabled when the task is executing. INTR(n) specifies that the task will execute
at interrupt level n.

20

CONSTANT DESCRIPTION DEFAULT

PREEMPT enable preemption

NOPREEMPT disable preemption

NOTSUCE disable timeslicing

TSUCE enable timeslicing

ASR enable ASR processing

NOASR disable ASR processing

INTR(O) enable all interrupts

INTR(n) execute at interrupt level n

Figure 4-2 Task Mode Constants

4.2.6 Accessing Task Arguments

All RTEMS tasks are invoked with a single argument which is specified when
they are started or restarted. The argument is commonly used to communicate
some startup information to the task. The simplest manner in which to define
a task which accesses it argument is:

task user task(arg
unsigned32 arg;

Application tasks requiring more information may view the single argument as
a pointer to a parameter block. A task utilizing the argument in this manner
may be defined as follows:

task usertask(argptr
struct user task-args *arg_ptr;

where the structure, usertask args is an application defined entity.

4.2.7 Floating Point Considerations

Creating a task with the FP flag results in additional memory being allocated
for the TCB to store the state of the numeric coprocessor during task switches.
This additional memory is not allocated for NOFP tasks. Saving and restoring
the context of a FP task takes longer than that of a NOFP task because of the
relatively large amount of time required for the numeric coprocessor to save or
restore its computational state.

21

Since RTEMS was designed specifically for embedded missile applications which
are floating point intensive, the executive is optimized to avoid unnecessarily
saving and restoring the state of the numeric coprocessor. The state of the
numeric coprocessor is only saved when an FP task is dispatched and that task
was not the last task to utilize the coprocessor. In a system with only one FP
task, the state of the numeric coprocessor will never be saved or restored.

Although the overhead imposed by FP tasks is minimal, some applications may
wish to completely avoid the overhead associated with FP tasks and still utilize
a numeric coprocessor. By preventing a task from being preempted while
performing a sequence of floating point operations, a NOFP task can utilize the
numeric coprocessor without incurring the overhead of a FP context switch.
However, if this approach is taken by the application designer, NO tasks should
be created as FP tasks.

4.2.8 Building an Attribute Set, Mode, or Mask

In general, an attribute set, mode, or mask is built by a bitwise OR of the desired
options. The set of valid options is provided in the description of the appropriate
directive. An option listed as a default is not required to appear in the option
OR list, although it is a good programming practice to specify default options.
If all defaults are desired, the option DEFAULTS should be specified on this
call.

This example demonstrates the attr parameter needed to create a local task
which utilizes the numeric coprocessor. The attr parameter could be FP or
LOCAL I FP. The attr parameter can be set to FP because LOCAL is the default
for all created tasks. If the task were global and used the numeric coprocessor,
then the attr parameter would be GLOBAL I FP.

The following example will demonstrate the mode and mask parameters used
with the tjmode directive to place a task at interrupt level 3 and make it
non-preemptible. The mode should be set to INTR(3)INOPREEMPT to
indicate the desired preemption mode and interrupt level, while the mask
parameter should be set to INTRMODE I PREEMPTMODE to indicate that the
calling task's interrupt level and preemption mode are being altered.

4.3 Operations

4.3.1 Creating Tasks

The t create directive creates a task by allocating a task control block, assigning
the task a user-specified name, allocating it a stack and floating point context

22

area, setting a user-specified initial priority, and assigning it a task ID. Newly
created tasks are initially placed in the dormant state. All RTEMS tasks execute
in the most privileged mode of the processor.

4.3.2 Obtaining Task IDs

When a task is created, RTEMS generates a unique task ID and assigns it to
the created task until it is deleted. The task ID may be obtained by either of
two methods. First, as the result of an invocation of the t create directive, the
task ID is stored in a user provided location. Second, the task ID may be obtained
later using the t.ident directive. The task ID is used by other directives to
manipulate this task.

4.3.3 Starting and Restarting Tasks

The t&start directive is used to place a dormant task in the ready state. This
enables the task to compete, based on its current priority, for the processor and
other system resources. Any actions, such as suspension or change of priority,
performed on a task prior to starting it are nullified when the task is started.

With the t start directive the user specifies the task's starting address, initial
execution mode, and argument. The argument is used to communicate some
startup information to the task. As part of this directive RTEMS initializes the
task's stack based upon the task's initial execution mode and start address. The
initialized stack will contain the specified argument and the entry address of a
routine which is invoked if the task exits instead of deleting itself. The initial
stack of a task is shown in Figure 4-1.

taskexitted OxO

argument Ox4

Figure 4-3 Initial Task Stack

The t-restart directive restarts a task at its initial starting address with its
original priority and execution mode, but with a different argument. The new
argument may be used to distinguish between the original invocation of the task
and subsequent invocations. The task's stack and control block are modified to
reflect their original creation values. Although references to resources that
have been requested are cleared, resources allocated by the task are NOT
automatically returned to RTEMS. A task cannot be restarted unless it has

23

previously been started (i.e. dormant tasks cannot be restarted). All restarted

tasks are placed in the ready state.

4.3.4 Suspending and Resuming Tasks

The t-suspend directive is used to place either the caller or another task into a
suspended state. The task remains suspended until a tyresume directive is
issued. This implies that a task may be suspended as well as blocked waiting
either to acquire a resource or for the expiration of a timer.

The tresume directive is used to remove another task from the suspended state.
If the task is not also blocked, resuming it will place it in the ready state, allowing
it to once again compete for the processor and resources. If the task was blocked
as well as suspended, this directive clears the suspension and leaves the task in
the blocked state.

4.3.5 Changing Task Priority

The t-setpri directive is used to obtain or change the current priority of either
the calling task or another task. If the new priority requested is CURRENT or
the task's actual priority, then the current priority will be returned and the
task's priority will remain unchanged. If the task's priority is altered, then the
task will be scheduled according to its new priority.

The trestart directive resets the priority of a task to its original value.

4.3.6 Changing Task Mode

The t mode directive is used to obtain or change the current execution mode of
the calling task. A task's execution mode is used to enable preemption,
timeslicing, ASR processing, and to set the task's interrupt level.

The t restart directive resets the mode of a task to its original value.

4.3.7 Notepad Locations

RTEMS provides sixteen notepad locations for each task. Each notepad location
may contain a note consisting of four bytes of information. RTEMS provides
two directives, t setnote and t.getnote, that enable a user to access and change
the notepad locations. The t setnote directive enables the user to set a task's
notepad entry to a specified note. The t.getnote directive allows the user to
obtain the note contained in any one of the sixteen notepads of a specified task.

24

4.3.8 Task Deletion

RTEMS provides the tdelete directive to allow a task to delete itself or any
other task. This directive removes all RTEMS references to the task, frees the
task's control block, removes it from resource wait queues, and deallocates its
stack as well as the optional floating point context. The task's name and ID
become inactive at this time, and any subsequent references to either of them
is invalid. In fact, RTEMS may reuse the task ID for another task which is
created later in the application.

Unexpired timers are canceled, however, other resources dynamically allocated
by the task are NOT automatically returned to RTEMS. Therefore, before a
task is deleted, all of its dynamically allocated resources should be deallocated
by the user. This may be accomplished by instructing the task to delete itself
rather than directly deleting the task. Other tasks may instruct a task to delete
itself by sending a "delete self' message, event, or signal, or by restarting the
task with special arguments which instruct the task to delete itself.

4.4 Directives

This section details the task manager's directives. A subsection is dedicated to
each of this manager's directives and describes the calling sequence, related
constants, usage, and status codes.

25

4.4.1 TCREATE - Create a task

CALLING SEQUENCE:
dir_status t_create(name,priority,stksize,mode,attr,&tid

INPUT:
objname name; /* user-defined name */
taskpri priority; /* task priority */
unsigned32 stksize; /* stack size in bytes */
unsigned32 mode; /* initial task mode */
unsigned32 attr; /* task attributes */

OUTPUT:
objid *tid; /* id of created task */

DIRECTIVE STATUS CODES:
SUCCESSFUL task created successfully
ESIZE stack too small
EMEMORY no memory for stack segment
EPRIORITY invalid task priority
E_HOMP multiprocessing not configured
ETOOMANY too many tasks created, or too many global objects

DESCRIPTION:

This directive creates a task which resides on the local node. It allocates and
initializes a TCB, a stack, and an optional floating point context area. The mode
parameter contains values which sets the task's initial execution mode. The FP
attribute should be specified if the created task is to use a numeric coprocessor.
For performance reasons, it is recommended that tasks not using the numeric
coprocessor should specify the NOFP attribute. If the GLOBAL attribute is
specified, the task can be accessed from remote nodes. The task id, returned in
tid, is used in other task related directives to access the task. When created, a
task is placed in the dormant state and can only be made ready to execute using
the directive t start.

NOTES:

This directive will not cause the calling task to be preempted.

Valid task priorities range from a high of I to a low of 255.

26

RTEMS supports a maximum of 256 interrupt levels which are mapped onto
the interrupt levels actually supported by the target processor.

The requested stack size should be at least 256 bytes. Application developers
should consider the stack usage of the device drivers wben calculating the stack
size required for tasks which utilize the driver.

The following task attribute constants are defined by RTEMS:

CONSTANT DESCRIPTION DEFAULT

NOFP does not use coprocessor *

FP uses numeric coprocessor

LOCAL local task *

GLOBAL global task

The following task mode constants are defined by RTEMS:

CONSTANT DESCRIPTION DEFAULT

PREEMPT enable preemption

NOPREEMPT disable preemption

NOTSUCE disable timeslicing

TSUCE enable timeslicing

ASR enable ASR processing

NOASR disable ASR processing

INTR(O) enable all interrupts

INTR(n) execute at interrupt level n

Tasks should not be made global unless remote tasks must interact with them.
This avoids the system overhead incurred by the creation of a global task. When
a global task is created, the task's name and id must be transmitted to every
node in the system for insertion in the local copy of the global object table.

The total number of global objects, including tasks, is limited by the
num.gobjects field in the Configuration Table.

27

4.4.2 TIDENT - Get ID of a task

CALUNG SEQUENCE:

dir_status t_ident(name, node, &tid)

INPUT:
obJname name; /* user-defined task name */

unsigned32 node; /* nodes to be searched */

OUTPUT:
obj id *tid; /* task id returned */

DIRECTIVE STATUS CODES:
SUCCESSFUL task identified successfully
EWAME invalid task name
E.NODE invalid node id

DESCRIPTION:

This directive obtains the task id associated with the task name specified in
name. A task may obtain its own id by specifying SELF or its own task name
in name. If the task name is not unique, then the task id returned will match
one of the tasks with that name. However, this task id is not guaranteed to
correspond to the desired task. The task id, returned in tid, is used in other
task related directives to access the task.

NOTES:

This directive will not cause the running task to be preempted.

If node is ALL-NODES, all nodes are searched with the local node being
searched first. All other nodes are searched with the lowest numbered node
searched first.

If node is a valid node number which does not represent the local node, then
only the tasks exported by the designated node are searched.

This directive does not generate activity on remote nodes. It accesses only the
local copy of the global object table.

28

4.4.3 T_START - Start a task

CALLING SEQUENCE:

dirstatus tstart(tid, saddr, arg)

INPUT:

obj-id tid; /* task id */
task ptr saddr; /* task entry point */
unsigned32 arg; /* argument */

OUTPUT: NONE

DIRECTIVE STATUS CODES:
SUCCESSFUL task started successfully
EID invalid task id
ESTATE task not in the dormant state
EREMOTE cannot start remote task

DESCRIPTION:

This directive readies the task, specified by tid, for execution based on the
priority and execution mode specified when the task was created. The starting
address of the task is given in saddr. The task's starting argument is contained
in arg. This argument can be a single value or the address of a parameter block.

NOTES:

The calling task will be preempted if its preemption mode is enabled and the
task being started has a higher priority.

Any actions performed on a dormant task such as suspension or change of
priority are nullified when the task is initiated via the t-start directive.

29

4.4.4 TRESTART - Restart a task

CALLING SEQUENCE:
dirstatus trestart(tid, arg)

INPUT:

objid tid; /* task id */
unsigned32 arg; /* argument */

OUTPUT: NONE

DIRECTIVE STATUS CODES:
SUCCESSFUL task restarted successfully
E-ID task id invalid
ESTATE task never started
EREMOTE cannot restart remote task

DESCRIPTION:

This directive resets the task specified by tid to begin execution at its original
starting address. The task's priority and execution mode are set to the original
creation values. If the task is currently blocked, RTEMS automatically makes
the task ready. A task can be restarted from any state, except the dormant state.

The task's starting argument is contained in arg. This argument can be a single
value or the address of a parameter block. This new argument may be used to
distinguish between the initial tstart of the task and any ensuing calls to
t-restart of the task. This can be beneficial in deleting a task. Instead of
deleting a task using the t-delete directive, a task can delete another task by
restarting that task, and allowing that task to release resources back to RTEMS
and then delete itself.

NOTES:

If tid is SELF, the calling task will be restarted and will not return from this
directive.

The calling task will be preempted if its preemption mode is enabled and the
task being restarted has a higher priority.

The task must reside on the locrl node, even if the task was created with the
GLOBAL option.

30

4.4.5 TDELETE - Delete a task

CALLING SEQUENCE:

dirstatus tdelete(tid)

INPUT:

obj-id tid; /* task id */

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL task deleted successfully
EID invalid task id
EREMOTE cannot delete remote task

DESCRIPTION:

This directive deletes a task, either the calling task or another task, as specified
by tid. RTEMS stops the execution of the task and reclaims the stack memory,
any allocated timers (TMCBs), and the TCB. RTEMS does not reclaim region
segments, partition buffers, or semaphores.

NOTES:

A task is responsible for releasing its resources back to RTEMS before deletion.
To insure proper deallocation of resources, a task should not be deleted unless
it is unable to execute or does not hold any RTEMS resources. If a task holds
RTEMS resources, the task should be allowed to deallocate its resources before
deletion. A task can be directed to release its resources and delete itself by
restarting it with a special argument or by sending it a message, an event, or a
signal.

Deletion of the current task (SELF) will force RTEMS to select a another task
to execute.

When a global task is deleted, the task id must be transmitted to every node in
the system for deletion from the local copy of the global object table.

The task must reside on the local node, even if the task was created with the
GLOBAL option.

31

4.4.6 TSUPEND - Suspend a task

CALLING SEQUENCE:

dirstatus tsuspend(tid)

INPUT:

obj_id tid; /* task id */

OUTPUT: NONE

DIRECTIVE STATUS CODES:
SUCCESSFUL task suspended successfully
EJD invalid task id
EALREADY task already suspended

DESCRIPTION:

This directive suspends the task specified by tid from further execution by
placing it in the suspended state. This state is additive to any other blocked
state that the task may already be in. The task will not execute again until
another task issues the tresume directive for this task and any blocked state
has been removed.

NOTES:

This directive supports local operations only.

The requesting task can suspend itself by specifying SELF as tid. In this case,
the task will be suspended and a successful return code will be returned when
the task is resumed.

Suspending a global task which does not reside on the local node will generate
a request to the remote node to suspend the specified task.

32

4.4.7 TRESUME - Resume a task

CALLING SEQUENCE:

dirstatus tresume(tid

INPUT:

obj-id tid; /* task id */

OUTPUT: NONE

DIRECTIVE STATUS CODES:
SUCCESSFUL task resumed successfully
EID invalid task id
ESTATE task not suspended

DESCRIPTION:

This directive removes the task specified by tid from the suspended state. If
the task is in the ready state after the suspension is removed, then it will be
scheduled to run. If the task is still in a blocked state after the suspension is
removed, then it will remain in that blocked state.

NOTES:

This directive supports local operations only.

The running task may be preempted if its preemption mode is enabled and the
local task being resumed has a higher priority.

Resuming a global task which does not reside on the local node will generate a
request to the remote node to resume the specified task.

33

4.4.8 T-SETPRI - Set task priority

CALLING SEQUENCE:

dir_status t-setpri(tid, priority, &ppriority)

INPUT:

objid tid; /* task id */
taskpri priority; /* new priority */

OUTPUT:

taskpri *ppriority; /* previous priority */

DIRECTIVE STATUS CODES:
SUCCESSFUL task priority set successfully
EJD invalid task id
EPRIORITY invalid task priority

DESCRIPTION:

This directive manipulates the priority of the task specified by tid. A tid of
SELF is used to indicate the calling task. When priority is not equal to
CURRENT, the specified task's previous priority is returned in ppriority.
When priority is CURRENT, the specified task's current priority is returned in
ppriority. Valid priorities range from a high of 1 to a low of 255.

NOTES:

The calling task may be preempted if its preemption mode is enabled and it
lowers its own priority or raises another task's priority.

Setting the priority of a global task which does not reside on the local node will
generate a request to the remote node to change the priority of the specified
task.

34

4.4.9 TMO)E - Change current task's mode

CALLING SEQJENCE:

dirstatus tjmode(mode, mask, &pmode)

INPUT:

unsigned32 mode; /* new mode values */
unsigned32 mask; /* mode fields to change */

OUTPUT:

unsigned32 *pmode; /* previous mode

DIRECTIVE STATUS CODES:

SUCCESSFUL always successful

DESCRIPTION:

This directive manipulates the execution mode of the calling task. A task's
execution mode enables and disables preemption, timeslicing, asynchronous
signal processing, as well as specifying the current interrupt level. To modify
an execution mode, the mode class(es) to be changed must be specified in the
mask parameter and the desired mode(s) must be specified in the mode
parameter.

NOTES:

The calling task will be preempted if it enables preemption and a higher priority
task is ready to run.

Enabling timeslicing has no effect if preemption is enabled.

A task can obtain its current execution mode, without modifying it, by calling
this directive with a mask value of CURRENT.

To temporarily disable the processing of a valid ASR, a task should call this
directive with the NOASR indicator specified in mode.

35

The following task mode constants are defined by RTEMS:

CONSTANT DESCRIPTION DEFAULT

PREEMPT enable preemption *

NOPREEMPT disable preemption

NOTSLICE disable timeslicing *

TSLICE enable timeslicing

ASR enable ASR processing *

NOASR disable ASR processing

INTR(O) enable all interrupts *

INTR(n) execute at interrupt level n,

The following mask constants are defined by RTEMS:

CONSTANT DESCRIPTION

CURRENT obtain current mode

PREEMPTMODE select preemption mode

TSUCEMODE select timeslicing mode

ASRMODE select ASR processing mode

INTRMODE select interrupt level

36

4.4.10 TGETNOTE - Get task notepad entry

CALLING SEQUENCE:

dirstatus t-getnote(tid, notepad, ¬e)

INPUT:

objid tid; /* task id */
unsigned32 notepad; /* notepad location */

OUTPUT:

unsigned32 *note; /* note value */

DIRECTIVE STATUS CODES:

SUCCESSFUL note obtained successfully
EID invalid task id
ENUMI3ER invalid notepad location

DESCRIPTION:

This directive returns the note contained in the notepad location of the task
specified by tid.

NOTES:

This directive supports local operations only.

This directive will not cause the running task to be preempted.

If tid is set to SELF, the calling task accesses its own notepad.

The sixteen notepad locations can be accessed using the constants NOTEPAD_0
through NOTEPAD15.

Getting a note of a global task which does not reside on the local node will
generate a request to the remote node to obtain the notepad entry of the
specified task.

37

4.4.11 T-SETNOTE - Set task notepad entry

CALLING SEQUENCE:
dirstatus tsetnote(tid, notepad, note)

INPUT:

objid tid; /* task id */
unsigned32 notepad; /* notepad location */
unsigned32 note; /* new value for note */

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL task's note set successfully
EID invalid task id
ENUMBER invalid notepad location

DESCRIPTION:

This directive sets the notepad entry for the task specified by tid to the value
note.

NOTES:

This directive supports local operations only.

If tid is set to SELF, the calling task accesses its own notepad locations.

This directive will not cause the running task to be preempted.

The sixteen notepad locations can be accessed using the constants NOTEPAD_0
through NOTEPADI5.

Setting a notepad location of a global task which does not reside on the local
node will generate a request to the remote node to set the specified notepad
entry.

38

5

Interrupt Manager

5.1 Introduction

Any real-time executive must provide a mechanism for quick response to
externally generated interrupts to satisfy the critical time constraints of the
application. The interrupt manager provides this mechanism for RTEMS.
This manager issues quick interrupt response times by providing the critical
ability to alter task execution by allowing a task to be preempted upon exit from
an ISR The interrupt manager includes the following directives:

Name Directive Description

iLenter Enter an ISR

iLreturn Return from an ISR

5.2 Background

5.2.1 i80386 Interrupt Processing

Although the i80386 supports multiple privilege levels, RTEMS and all user
software execute at privilege level 0. This decision was made by the designer's
of RTEMS to enhance compatibility with processors which do not provide
sophisticated protection facilities like those of the i80386. This decision greatly
simplifies the discussion of i80386 interrupt processing , as one need only
consider interrupts without privilege transitions.

39

Without support hardware, only three levels (enabled, disabled, and
non-maskable) of interrupt priorities are supported by the i80386
microprocessor. Interrupts are enabled when the interrupt-enable flag (IF) in
the extended flags (EFLAGS) register is set. Conversely, interrupt processing
is inhibited when IF is cleared. During a non-maskable interrupt, all other
interrupts, including other non-maskable ones, are inhibited.

The i80386 processor looks for the occurrence of interrupts only between the
end of one instruction and the beginning of the next. When the "repeat" prefix
is used, interrupts may occur between repetitions. Upon recognition of an
interrupt, the i80386 automatically pushes an interrupt stack frame (ISF)
which consists of the current extended flags register, code segment, and
extended instruction pointer. The i80386 then vectors to a user-supplied
interrupt service routine (ISR). The ISR performs whatever minimum action
is required tc service that interrupt. Also, through system calls, the ISR may
communicate and influence the scheduling of one or more tasks to respond to
conditions indicated by the interrupt.

Extended Instruction Pointer OxO

UNUSED Code Segment Ox4

Extended Flags Register Ox8

Figure 5-1 i80386 Interrupt Stack Frame

5.2.2 Mapping Processor Interrupt Levels

Although RTEMS supports 256 interrupt levels, the i80386 only supports three
(one of which is non-maskable). RTEMS interrupt levels 0 corresponds to
interrupts enabled, while RTEMS interrupt level 1 corresponds to interrupts
disabled. All other RTEMS interrupt levels are undefined and their behavior
is unpredictable.

5.2.3 Disabling of Interrupts by RTEMS

During the execution of directive calls, critical sections of code may be executed.
When these sections are encountered, RTEMS disables interrupts before the
execution of this section and restores them to the previous level upon
completion of the section. RTEMS has been optimized to insure that interrupts

40

are disabled for less than ten (10) microseconds on a 16.67 Mhz i80386 with zero
wait states.

Non-maskable interrupts cannot be disabled, and ISRs which execute at this
level MUST NEVER issue RTEMS system calls. If a directive is invoked,
unpredictable results may occur due to the inability of RTEMS to protect its
critical sections. However, non-maskable ISRs that make no system calls may
safely execute.

5.2.4 Format of an ISR

The i enter and i.return directives must be used in conjunction with one
another. An ISR which invokes ienter must always exit with i.return.
Likewise, no ISR should invoke i.return without previously invoking i-enter. If
any ISR invokes an RTEMS directive, then all ISRs must use the interrupt
manager.

The following is an example of a typical interrupt service routine:

demo isr
push EAX ; save task's EAX

mov EAX,I ENTER ; load function code
int RTEMSTRAP ; call i enter

save other registers as necessary (A)

process the interrupt

restore all registers saved at point A

mov EAX,I RETURN ; load function code
int RTEMS-TRAP ; call i return

;i return does not return and restores EAX

Because the EAX register must be corruptad to invoke the i enter directive, the
ISR must save EAX (and no other general registers) on the stack before invoking
this directive. The EAX register will be restored automatically by the ireturn
directive. Any other registers, including floating point, which are modified by
the ISR should be saved after returning from the ienter directive and restored
before invoking the ireturn directive. RTEMS does not guarantee the contents
of any i80386 hardware data or address register if a system call (other than
i-enter or i-return) is made while servicing an interrupt. To minimize the
masking of other interrupts, the ISR should perform the minimum actions

41

required to service the interrupt. Other non-essential actions should be handled

by application tasks.

5.2.5 Directives Allowed from an ISR

Using the interrupt manager insures that RTEMS knows when a directive is
being called from an ISR The ISR may then use system calls to synchronize
itself with an application task. The synchronization may involve messages,
events or signals being passed by the ISR to the desired task. The following is
a list of RTEMS system calls that may be made from an ISR

" Task Management

t.getnote, t~setnote, tsuspend, tresume

* Message, Event, and Signal Management

q.send, qjurgent

ev-send

assend

* Semaphore Management

sm-v

* Time Management

tm.get, tm tick

" Dual-Ported Memory Management

dp.ext2int, dpint2ext

* Interrupt Handling and Fatal Error Management

i-enter, ireturn

k-fatal

" Multiprocessing

pkt-arrived

5.3 Operations

5.3.1 Entering an ISR

Since the interrupt vectors are user-installed and automatically vectored to by
the processor, RTEMS is not involved in the switching of control from the

42

currently executing task to the appropriate ISR. The * enter directive allows
RTEMS to recognize, in a processor independent fash - when an interrupt
service routine is executing. This directive must be inv- .t . immediately upon
entering an interrupt service routine. RTEMS must recognize ISRs in order to
postpone dispatch processing required by directives called from an ISR.

5.3.2 Exiting an ISR

RTEMS provides the i.return directive to allow the ISR to indicate that an
interrupt service routine is terminating. This directive guarantees that proper
task scheduling and dispatching are performed at the conclusion of an ISR. A
system call made by the ISR may have readied a task of higher priority tb ,n the
interrupted task. Therefore, when the ISR completes, the postponed dispatch
processing must be performed.

Interrupts are nested whenever an interrupt occurs during the execution of
another ISR. RTEMS supports efficient interrupt nesting by allowing the
nested ISRs to terminate without performing any dispatch processing. Only
when the outermost ISR terminates will the postponed dispatching occur.

5.4 Directives

This section details the interrupt manager's directives. A subsection is
dedicated to each of this manager's directives and describes the calling sequence,
related constants, usage, and status codes.

43

5.4.1 I-ENTER - Enter an ISR

CALLING SEQUENCE:
void ienter()

INPUT: NONE

OUTPUT: NONE

DIRECTIVE STATUS CODES: NONE

DESCRIPTION:

This directive is called upon entering an ISR to inform the RTEMS executive
an ISR has been entered. This allows RTEMS to correctly process nested
interrupts. All ISRs which invoke RTEMS directives must call the ienter and
i-return directives. If no ISR on the local node invokes an RTEMS directive,
then i enter and i return need not be used. If an ISR can be interrupted by an
ISR which uses directives, then it must use both the tenter and ireturn
directives.

NOTES:

This directive is callable from an ISR only.

This directive is callable only from assembly language.

The EAX register must be saved on the stack before loading the EAX register
with the function code needed to call this directive.

If the ISR utilizes floating point instructions, then it must save and restore the
floating point coprocessor's complete context.

44

5.4.2 I-RETURN - Return from an ISR

CALLING SEQUENCE:
void i_return()

INPUT: NONE

OUTPUT: NONE

DIRECTIVE STATUS CODES: NONE

DESCRIPTION:

This directive is called to exit an ISR. Since the ISR may have called a directive
that caused another task with a higher priority to be ready to execute, the
ireturn directive allows RTEMS to dispatch the highest priority task that is
ready to execute. If an ISR was entered by calling the i-enter directive, then it
must exit with the i return directive.

NOTES:

This directive is callable from an ISR only.

This directive is callable only from assembly language.

The task which was executing before the initial interrupt may be preempted if
a higher priority task becomes ready to execute during the interrupt.

This directive DOES NOT RETURN to the caller.

An ISR must restore all registers saved after returning from the ienter
directive. The copy of EAX saved before invoking the ienter directive will
automatically be restored by the ireturn directive.

If the ISR utilizes floating point instructions, then it MUST save and restore
the floating point coprocessor's complete context.

45/(46 blank)

6

Time Manager

6.1 Introduction

The time manager provides support for both clock and timer facilities. The
directives provided by the time manager are:

Name Directive Description

tm-set Set system date and time

tmget Get system date and time

tm-wkafter Wake up after interval

tm-wkwhen Wake up when specified

tm-evafter Send event set after interval

tm-evwhen Send event set when specified

tm.evevery Send periodic event set

tm-cancel Cancel timer event

tm-tick Announce a clock tick

47

6.2 Background

6.2.1 Required Support

For the features provided by the time manager to be utilized, periodic timer
interrupts are required. Therefore, a real-time clock or some kind of hardware
timer is necessary to create the timer interrupts. The tm-tick directive is
normally called by the timer ISR to announce to RTEMS that a system clock
tick has transpired. Elapsed time is measured in ticks. A tick is defined to be
an integral number of milliseconds which is specified by the user in the
Configuration Table.

6.2.2 Time and Date Data Structure

The clock facilities of the time manager operate upon a calendar time. These
directives utilize the following date and time structure:

struct timeinfo {
unsignedl6 year; /* year A.D. ; greater than 1987 */
unsigned8 month; /* month, 1 - 12 */
unsigned8 day; /* day, 1 - 31
unsignedl6 hour; /* hour, 0 - 23
unsigned8 minute; /* minute, 0 - 59
unsigned8 second; /* second, 0 - 59
unsigned32 ticks; /* elapsed ticks between seconds */

1;

6.2.3 Timer Types

The following types of timers are maintained by the time manager:

* sleep timers

* event timers

* timeouts

A sleep timer allows a task to delay for a given interval or up until a given time,
and then wake and continue execution. This type of timer is created
automatically by the tm-wkafter and tmwkwhen directives and, as a result,
does not have an RTEMS ID. Once activated, a sleep timer cannot be explicitly
canceled. Each task may activate one and only one sleep timer at a time.

An event timer allows a task to send an event set to itself either after a given
interval or at a given time. This type of timer is created automatically by the
tm-evafter, tm-evevery, and tm-evwhen directives. All event timers are

48

assigned a unique RTEMS ID which can be used to cancel the timer. A task can
have multiple event timers active simultaneously. The task must use the
ev.receive directive to determine if the events have been posted.

Timeouts are a special type of timer automatically created when the timeout
option is used on the qreceive, evyreceive, smp and rn.getseg directives. Each
task may have one and only one timeout active at a time. When a timeout
expires, it unblocks the task with a timeout status code.

Timers affect only the calling task, either by putting it to sleep or sending it an
event set. For any particular task, multiple event timers can be used in
combination with a single timeout or sleep timer. Under no circumstances, can
a task have both a sleep timer and a timeout active simultaneously.

A Timer Control Block (TMCB) is allocated as part of creating a timer. The
TMCB is used by RTEMS to manage the timer. TMCBs are automatically freed
when the timer expires.

6.2.4 Timeslicing

Timeslicing is a task scheduling discipline in which tasks of equal priority are
executed for a specific period of time before control of the CPU is passed to
another task. It is also sometimes referred to as the automatic round-robin
scheduling algorithm. The length of time allocated to each task is known as the
quantum or timeslice.

The system's timeslice is defined as an integral number of ticks, and is specified
in the Configuration Table. The timeslice is defined for the entire system of
tasks, but timeslicing is enabled and disabled on a per task basis.

The tmintick directive implements timeslicing by decrementing the running
task's time-remaining counter when both timeslicing and preemption are
enabled. If the task's timeslice has expired, then that task will be preempted if
there exists a ready task of equal priority.

6.3 Operations

6.3.1 Announcing a Tick

RTEMS provides the tmtick directive which is called from the user's real- time
clock ISR to inform RTEMS that a tick has elapsed. The tick frequency value,
defined in milliseconds, is a configuration parameter found in RTEMS's
Configuration Table. RTEMS divides one-thousand milliseconds (one second)

49

by the number of milliseconds per tick to determine the number of calls to the
tmtick directive per second. The frequency of tmintick calls determines the
resolution (granularity) for all time dependent RTEMS actions. For example,
calling tm.tick ten times per second yields a higher resolution than calling
tmintick two times per second. The tmtick directive is responsible for
maintaining both calendar time and the dynamic set of timers.

6.3.2 Setting and Obtaining the Time

The tm. set directive allows a task or an ISR to set the date and time maintained
by RTEMS. Calendar time operations will return an error code if invoked before
the date and time have been set. The tm.get directive allows a task or an ISR
to obtain the current date and time.

6.3.3 Using a Sleep Timer

The tm-wkafter directive creates a sleep timer which allows a task to go to sleep
for a specified interval. The task is blocked until the delay interval has elapsed,
at which time the task is unblocked. A task calling the tm-wkafter directive
with a delay interval of YIELD ticks will yield the processor to any other ready
task of equal or greater priority and remain ready to execute.

The tmwkwhen directive creates a sleep timer which allows a task to go to
sleep until a specified date and time. The calling task is blocked until the
specified date and time has occurred, at which time the task is unblocked.

6.3.4 Using an Event Timer

The tm evafter directive creates an event timer which allows a task to be sent
a specified event set after a specified interval. The tm-evwhen directive creates
an event timer which is programmed to expire at a future date and time. The
tmevevery directive is similar to the tmevafter directive except that the
created timer is rearmed rather than canceled at the end of the interval. This
results in an event set being sent at regular intervals rather than just a single
time.

All three directives return a unique timer ID generated by RTEMS to the calling
task.

The calling task is not blocked by either the tmevafter, tmevevery, or the
tm evwhen directive and must use the ev receive directive to obtain the event
set.

50

6.3.5 Canceling a Timer

The tm cancel directive is used to cancel an event timer. The timer's control
block is returned to the TMCB free list when the event timer is canceled.
Timers are automatically canceled upon expiration.

6.4 Directives

This section details the time manager's directives. A subsection is dedicated to
each of this manager's directives and describes the calling sequence, related
constants, usage, and status codes.

51

6.4.1 TMSET - Set system date and time

CALLING SEQUENCE:
dirstatus tmset(&timebuf

INPUT:

timebuffer *timebuf; /* date/time pointer */

OUTPUT: NONE

DIRECTIVE STATUS CODES:
SUCCESSFUL date and time set successfully
ECLOCK invalid time buffer

DESCRIPTION:

This directive sets the system date and time. The date, time, and ticks in the
timebuf structure are all range-checked, and an error is returned if any one is
out of its valid range.

NOTES:

Years before 1988 are invalid.

The system date and time are based on the configured tick rate (number of
milliseconds in a tick).

Setting the time forward may cause a higher priority task, blocked waiting on
a specific time, to be made ready. In this case, the calling task will be preempted
after the next clock tick.

Re-initializing RTEMS causes the system date and time to be reset to an
uninitialized state. Another call to tmset is required to re-initialize the system
date and time to application specific specifications.

52

6.4.2 TMGET - Get system date and time

CALLING SEQUENCE:

dirstatus tm-get(&timebuf)

INPUT: NONE

OUTPUT:

timebuffer *timebuf; /* date/time pointer */

DIRECTIVE STATUS CODES:

SUCCESSFUL current time obtained successfully
ENOTDEFINED system date and time is not set

DESCRIPTION:

This directive obtains the system date and time. If the date and time have not
been set with a previous call to tm set, then the ENOTDEFINED status code
is returned.

NOTES:

This directive is callable from an ISR.

This directive will not cause the running task to be preempted. Re-initializing
RTEMS causes the system date and time to be reset to an uninitialized state.
Another call to tmset is required to re-initialize the system date and time to
application specific specifications.

53

6.4.3 TMWKAFTER - Wake up after interval

CALLING SEQUENCE:

dirstatus tmwkafter(ticks)

INPUT:

interval ticks; /* number of ticks to wait */

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL always successful

DESCRIPTION:

This directive blocks the calling task for the specified number of system clock
ticks. When the requested interval has elapsed, the task is made ready. The
tmtick directive automatically updates the delay period.

NOTES:

Setting the system date and time with the tm-set directive has no effect on a
tm wkafter blocked task.

A task may give up the processor and remain in the ready state by specifying a
value of YIELD in ticks.

The maximum timer interval that can be specified is the maximum value which
can be represented by the unsigned32 type.

54

6.4.4 TMWKWHEN - Wake up when specified

CALLING SEQUENCE:
dirstatus tmwkwhen(timebuf)

INPUT:

timebuffer *timebuf; /* date/time pointer */

OUTPUT: NONE

DIRECTIVE STATUS CODES:
SUCCESSFUL awakened at date/time successfully
ECLOCK invalid time buffer
ENOTDEFINED system date and time is not set

DESCRIPTION:

This directive blocks a task until the date and time specified in timebuf. At the
requested date and time, the calling task will be unblocked and made ready to
execute.

NOTES:

The ticks portion of the timebuf structure is ignored. The timing granularity
of this directive is a second.

55

6.4.5 TMEVAFTER - Send event set after interval

CALLING SEQUENCE:
dirstatus tmevafter(ticks, event, &tmid)

INPUT:
interval ticks; /* ticks until event */
eventset event; /* event set */

OUTPUT:

obj id *tmid; /* id assigned to timer */

DIRECTIVE STATUS CODES:
SUCCESSFUL timer event set up successfully
E TOOMANY too many timers allocated

DESCRIPTION:

This directive sets up a timer directing RTEMS to send the event set, event, to
the calling task after ticks system clock ticks have elapsed. The id for the
created timer is returned in tmid.

The calling task must call evyreceive to receive these events and will block until
the timer expires. The tm tick directive automatically adjusts the delay period.

NOTES:

This directive will not cause the calling task to be preempted.

Setting the system date and time by way of the tmset directive has no effect
on the countdown of the timer.

The maximum timer interval that can be specified is the maximum value which
can be represented by the unsigned32 type.

A task's timers (TMCBs) are canceled and reclaimed by RTEMS when the task
is deleted.

56

6.4.6 TMEVWHEN - Send event set when specified

CALLING SEQUENCE:

dirstatus tmevwhen(timebuf, event, &tmid)

INPUT:

timebuffer *timebuf; /* time/date pointer */
eventset event; /* event set */

OUTPUT:

obj-id *tmid; /* id assigned to timer */

DIRECTIVE STATUS CODES:

SUCCESSFUL timer event set up successfully
ECLOCK invalid time buffer
ENOTDEFINED system date and time is not set
ETOOMANY too many timers allocated

DESCRIPTION:

This directive sets up a timer directing RTEMS to send the event set, event, to
the calling task at the date and time specified in timebuf. The id for the created
timer is returned in tmid. The calling task must call the evyreceive directive to
receive these events.

NOTES:

The ticks portion of the timebuf structure is set to zero. The timing granularity
of this directive is a second.

A task's timers (TMCBs) are canceled and reclaimed by RTEMS when the task
is deleted.

57

6.4.7 TMEVEVERY - Send periodic event set

CALLING SEQUENCE:
dirstatus tmevevery(ticks, event, &tmid)

INPUT:

interval ticks; /* ticks between events */
event-set event; /* event set

OUTPUT:

obj_id *tmid; /* id assigned to timer */

DIRECTIVE STATUS CODES:

SUCCESSFUL timer event set up successfully
ETOOMANY too many timers allocated
ENUMBER interval of zero is invalid

DESCRIPTION:

This directive sets up an interval timer directing RTEMS to send the event set,
event to the calling task after every occurrence of ticks system clock ticks. The
id for the created timer is returned in tmid.

The calling task must call ev receive to receive these events and will block until
the timer expires. The tmtick directive is used to determine the period
between each sending of the event set.

NOTES:

The (rective tm-cancel must be used to stop the timer from sending the event
set.

This oirective will not cause the calling task to be preempted.

Setting the system date ana time by way of the tmset directive has no effect
on the created timer.

The maximum timer interval that can be specified is the maximum value which
can be represented by the unsigned32 type.

A task's timers (TMCBs) are canceled and reclaimed by RTEMS when the task
is deleted.

58

6.4.8 TMCANCEL - Cancel timer event

CALLING SEQUENCE:
dirstatus tmcancel(tmid

INPUT:

obj-id tmid; /* timer id */

OUTPUT: NONE

DIRECTIVE STATUS CODES:
SUCCESSFUL timer event canceled successfully
EID invalid timer id

DESCRIPTION:

This directive cancels the timer event specified by tmid. This timer event was
scheduled by the tm-evafter, the tm-evwhen, or the tm evevery directives.

NOTES:

This directive will not cause the calling task to be preempted.

59

6.4.9 TMTICK - Announce a clock tick

CALLING SEQUENCE:
dirstatus tm tick()

INPUT: NONE

OUTPUT: NONE

DIRECTIVE STATUS CODES:
SUCCESSFUL always successful

DESCRIPTION:

This directive announces to RTEMS that a system clock tick has occurred. The
directive is usually called from the timer interrupt ISR of the local processor.
This directive maintains the system date and time, decrements timers for
delayed tasks and timeouts, and implements timeslicing.

NOTES:

This directive is typically called from an ISR

The ms tick and tslice parameters in the Configuration Table contain the
number of milliseconds per tick and number of ticks per timeslice, respectively.

60

7

Semaphore Manager

7.1 Introduction

The semaphore manager utilizes standard Dijkstra counting semaphores to
provide synchronization and mutual exclusion capabilities. The directives
provided by the semaphore manager are:

Name Directive Description

sm-create Create a semaphore

smident Get ID of a semaphore

sm-delete Delete a semaphore

smp Acquire a semaphore

smv Release a semaphore

7.2 Background

A semaphore can be viewed as a protected variable whose value can be modified
only with the sm create, sm-p, and smv directives. RTEMS supports both
binary and counting semaphores. A binary semaphore is restricted to values of
zero or one, while a counting semaphore can assume any non-negative integer
value.

61

A binary semaphore can be used to control access to a single resource. In
particular, it can be used to enforce mutual exclusion for a critical section in user
code. In this instance, the semaphore would be created with an initial count of
one to indicate that no task is executing the critical section of code. Upon entry
to the critical section, a task must issue the sm-p directive to prevent other tasks
from entering the critical section. Upon exit from the critical section, the task
must issue the smv directive to allow another task to execute the critical
section.

A counting semaphore can be used to control access to a pool of two or more
resources. For jxample, access to three printers could be administered by a
semaphore created with an initial count of three. When a task requires access
to one of the printers, it issues the smp directive to obtain access to a printer.
If a printer is not currently available, the task can wait for a printer to become
available or return immediately. When the task has completed printing, it
should issue the smy directive to allow other tasks access to the printer.

Task synchronization may be achieved by creating a semaphore with an initial
count of zero. One task waits for the arrival of another task by issuing a sm-p
directive when it reaches a synchronization point. The other task performs a
corresponding smy operation when it reaches its synchronization point, thus
unblocking the pending task.

7.2.1 Building an Attribute Set

In general, an attribute set is built by a bitwise OR of the desired attributes.
The set of valid attributes is provided in the description of the sm-create and
smjp directives. An attribute listed as a default is not required to appear in the
attribute OR list, although it is a good programming practice to specify default
attributes. If all defaults are desired, the attribute DEFAULTS should be
specified on this call.

This example demonstrates the attr parameter needed to create a local
semaphore with a task priority waiting queue discipline. The attr parameter
could be PRIORITY or LOCAL I PRIORITY. The attr parameter can be set to
PRIORITY because LOCAL is the default for all created tasks. If a similar
semaphore were to be known globally, then the attr parameter would be
GLOBAL I PRIORITY.

62

7.3 Operations

7.3.1 Creating a Semaphore

The sm create directive creates a semaphore with a user-specified name as well
as an initial count. At create time the method for placing waiting tasks in the
semaphore's task wait queue (FIFO or task priority) is specified. RTEMS
allocates a Semaphore Control Block (SMCB) from the SMCB free list. This
data structure is used by RTEMS to manage the newly created semaphore. Also,
a unique semaphore ID is generated and returned to the calling task.

7.3.2 Obtaining Semaphore IDs

When a semaphore is created, RTEMS generates a unique semaphore ID and
assigns it to the created semaphore until it is deleted. The semaphore ID may
be obtained by either of two methods. First, as the result of an invocation of
the smcreate directive, the semaphore ID is stored in a user provided location.
Second, the semaphore ID may be obtained later using the smident directive.
The semaphore ID is used by other semaphore manager directives to access this
semaphore.

7.3.3 Acquiring a Semaphore

The sm-p directive is used to acquire the specified semaphore. A simplified
version of the smp directive can be described as follows:

if semaphore's count is greater than zero
then decrement semaphore's count
else wait for release of semaphore

return SUCCESSFUL

When the semaphore cannot be immediately acquired, one of the following
situations applies:

* By default, the calling task will wait forever to acquire the
semaphore.

" SpecifyingNOWAIT forces an immediate return with an error
status code.

* Specifyinga timeout limits the interval the task will wait before
returning with an error status code.

63

If the task waits to acquire the semaphore, then it is placed in the semaphore's
task wait queue in either FIFO or task priority order. All tasks waiting on a
semaphore are returned an error code when the message queue is deleted.

7.3.4 Releasing a Semaphore

The smv directive is used to release the specified semaphore. A simplified
version of the smv directive can be described as follows:

if no tasks are waiting on this semaphore
then increment semaphore's count
else assign semaphore to a waiting task

return SUCCESSFUL

7.3.5 Semaphore Deletion

The smindelete directive removes a semaphore from the system and frees its
control block. A semaphore can be deleted by any task that knows the
semaphore's ID. As a result of this directive, all tasks blocked waiting to acquire
the semaphore will be readied and returned a status code which indicates that
the semaphore was deleted. Any subsequent references to the semaphore's
name and ID are invalid.

7.4 Directives

This section details the semaphore manager's directives. A subsection is
dedicated to each of this manager's directives and describes the calling sequence,
related constants, usage, and status codes.

64

7.4.1 SMCREATE - Create a semaphore

CALLING SEQUENCE:

dirstatus smcreate(name, count, attr, &smid)

INPUT:

objname name; /* user-defined name */
unsigned32 count; /* initial count */
unsigned32 attr; /* attributes */

OUTPUT:

objid *smid; /* smid assigned */

DIRECTIVE STATUS CODES:

SUCCESSFUL semaphore created successfully
E TOOMANY too many semaphores created
ENOMP multiprocessing not configured
ETOOMANY too many global objects

DESCRIPTION:

This directive creates a semaphore which resides on the local node. The created
semaphore has the user-defined name specified in name and the initial count
specified in count. For control and maintenance of the semaphore, RTEMS
allocates and initializes a SMCB. The RTEMS-assigned semaphore id is
returned in smid. This semaphore id is used with other semaphore related
directives to access the semaphore.

Specifying PRIORITY in attr causes tasks waiting for a semaphore to be
serviced according to task priority. When FIFO is selected, tasks are serviced
in First In-First Out order.

NOTES:

This directive will not cause the calling task to be preempted.

65

The following semaphore attribute constants are defined by RTEMS:

CONSTANT DESCRIPTION DEFAULT

FIFO tasks wait by FIFO *

PRIORITY tasks wait by priority

NOUMIT unlimited queue size

LIMIT limit queue size to count

LOCAL local semaphore *

GLOBAL global semaphore

Semaphores should not be made global unless remote tasks must interact with
the created semaphore. This is to avoid the system overhead incurred by the
creation of a global semaphore. When a global semaphore is created, the
semaphore's name and id must be transmitted to every node in the system for
insertion in the local copy of the global object table.

The total number of global objects, including semaphores, is limited by the
num-gobjects field in the Configuration Table.

66

7.4.2 SMIDENT - Get ID of a semaphore

CALLING SEQUENCE:

dirstatus smident(name, node, &smid)

INPUT:

obj name name; /* user-defined name */

unsigned32 node; /* node(s) to search */

OUTPUT:

obj-id *smid; /* semaphore id */

DIRECTIVE STATUS CODES:
SUCCESSFUL semaphore identified successfully
ENAME semaphore name not found
ENODE invalid node id

DESCRIPTION:

This directive obtains the semaphore id associated with the semaphore name.
If the semaphore name is not unique, then the semaphore id will match one of
the semaphores with that name. However, this semaphore id is not guaranteed
to correspond to the desired semaphore. The semaphore id is used by other
semaphore related directives to access the semaphore.

NOTES:

This directive will not cause the running task to be preempted.

If node is ALL-NODES, all nodes are searched with the local node being
searched first. All other nodes are searched with the lowest numbered node
searched first.

If node is a valid node number which does not represent the local node, then
only the semaphores exported by the designated node are searched.

This directive does not generate activity on remote nodes. It accesses only the
local copy of the global object table.

67

7.4.3 SMDELETE - Delete a semaphore

CALLING SEQUENCE:

dir status smdelete(smid)

INPUT:

obj_id smid; /* semaphore id */

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL semaphore deleted successfully
EID invalid semaphore id
EREMOTE cannot delete remote semaphore

DESCRIPTION:

This directive deletes the semaphore specified by smid. Any tasks that are
waiting on this semaphore are unblocked with a status code for a deleted
semaphore. The SMCB for this semaphore is reclaimed by RTEMS.

NOTES:

The calling task will be preempted if it enabled by the task's execution mode
and a higher priority local task is waiting on the deleted semaphore. The calling
task will NOT be preempted if all of the tasks that are waiting on the semaphore
are remote tasks.

The calling task does not have to be the task that created the semaphore. Any
local task that knows the semaphore id can delete the semaphore.

When a global semaphore is deleted, the semaphore id must be transmitted to
every node in the system for deletion from the local copy of the global object
table.

The semaphore must reside on the local node, even if the semaphore was created
with the GLOBAL option.

Proxies, used to represent remote tasks, are reclaimed when the semaphore is
deleted.

68

7.4.4 SMP - Acquire a semaphore

CALLING SEQUENCE:

dir status smp(smid, options, timeout)

INPUT:

obj-id smid; /* semaphore id */
unsigned32 options; /* option set */
interval timeout; /* wait interval */

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL semaphore obtained successfully
EUNSATISFIED semaphore not available
ETIMEOUT timed out waiting for semaphore
EDELETE semaphore deleted while waiting
EID invalid semaphore id

DESCRIPTION:

This directive acquires the semaphore specified by smid. The WAIT and
NOWAIT options of the options parameter are used to specify whether the
calling task wants to wait for the semaphore to become available or return
immediately. For either option, if the current semaphore count is positive, then
it is decremented by one and the semaphore is successfully acquired by
returning immediately with a successful return code.

If the calling task chooses to return immediately and the current semaphore
count is zero or negative, then a status code indicating that the semaphore is
not available is returned. If the calling task chooses to wait for a semaphore
and the current semaphore count is zero or negative, then it is decremented by
one and the calling task is placed on the semaphore's wait queue and blocked.
If the semaphore was created with the PRIORITY option, then the calling task
is inserted into the queue according to its priority. However, if the semaphore
was created with the FIFO option, then the calling task is placed at the rear of
the wait queue.

The timeout parameter specifies the maximum interval the calling task is
willing to be blocked waiting for the semaphore. If it is set to NOTIMEOUT,
then the calling task will wait forever.

69

NOTES:

The following semaphore acquisition option constants are defined by RTEMS:

CONSTANT DESCRIPTION DEFAULT

WAIT wait for semaphore

NOWAIT do NOT wat for semaphore

Attempting to obtain a global semaphore which does not reside on the local node
will generate a request to the remote node to access the semaphore. If the
semaphore is not available and NOWAIT was not specified, then the task must
be blocked until the semaphore is released. A proxy is allocated on the remote
node to represent the task until the semaphore is released.

70

7.4.5 SMV - Release a semaphore

CALLING SEQUENCE:

dirstatus sm-v(smid

INPUT:

obj-id smid; /* semaphore id */

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL semaphore released successfully
EID invalid semaphore id

DESCRIPTION:

This directive releases the semaphore specified by smid. The semaphore count
is incremented by one. If the count is zero or negative, then the first task on
this semaphore's wait queue is removed and unblocked. The unblocked task
may preempt the running task if the running task's preemption mode is enabled
and the unblocked task has a higher priority than the running task.

NOTES:

This directive supports local operations only.

The calling task may be preempted if it causes a higher priority task to be made
ready for execution.

Releasing a global semaphore which does not reside on the local node will
generate a request telling the remote node to release the semaphore.

If the task to be unblocked resides on a different node from the semaphore, then
the semaphore allocation is forwarded to the appropriate node, the waiting task
is unblocked, and the proxy used to represent the task is reclaimed.

711(72 blank)

8

IFq Message Manager

8.1 Introduction

The message manager provides communication and synchronization
capabilities using RTEMS message queues. The directives provided by the
message manager are:

Name Directive Description

q-create Create a queue

q-ident Get ID of a queue

q-delete Delete a queue

q-send Put message at rear of a queue

q_urgent Put message at front of a queue

q-broadcast Broadcast N messages to a queue

q-receive Receive message from a queue

q_flush Flush all messages on a queue

73

8.2 Background

8.2.1 Messages

A message is a fixed length buffer where information can be stored to support
communication. A message has a length of sixteen bytes. The information
stored in a message is user-defined and can be actual data, pointer(s), or empty.

8.2.2 Message Queues

A message queue permits the passing of messages among tasks and ISRs.
Message queues can contain a variable number of messages. Normally messages
are sent to and received from the queue in FIFO order using the qasend directive.
However, the qurgent directive can be used to place messages at the head of a
queue in LIFO order.

Synchronization can be realized because a task can wait for a message to arrive
at a queue. Also, a task may poll a queue for the arrival of a message.

8.2.3 Building an Attribute Set

In general, a attribute set is built by a bitwise OR of the desired attributes. The
set of valid attributes is provided in the description of the q.create and q.receive
directives. An attribute listed as a default is not required to appear in the
attribute OR list, although it is a good programming practice to specify default
attributes. If all defaults are desired, the attribute DEFAULTS should be
specified on this call.

This example demonstrates the attr parameter needed to create a local message
queue with a task priority waiting queue discipline. The attr parameter could
be PRIORITY or LOCAL I PRIORITY. The attr parameter can be set to
PRIORITY because LOCAL is the default for all created message queues. If a
similar message queue were to be known globally, then the attr parameter
would be GLOBAL I PRIORITY.

8.3 Operations

8.3.1 Creating a Message Queue

The qcreate directive creates a message queue with the user-defined name.
Optionally, a limit can be placed on the number of messages allowed to be in the
message queue at one time. The user may select FIFO or task priority as the

74

method for placing waiting tasks in the task wait queue. RTEMS allocates a
Queue Control Block (QCB) from the QCB free list to maintain the newly
created queue. RTEMS also generates a message queue ID which is returned
to the calling task.

8.3.2 Obtaining Message Queue Is

When a message queue is created, RTEMS generates a unique message queue
ID. The message queue ID may be obtained by either of two methods. First,
as the result of an invocation of the qcreate directive, the queue ID is stored
in a user provided location. Second, the queue ID may be obtained later using
the q ident directive. The queue ID is used by other message manager
directives to access this message queue.

8.3.3 Receiving a Message

The q_receive directive attempts to retrieve a message from the specified
message queue. If at least one message is in the queue, then the message is
removed from the queue, copied to the caller's message buffer, and returned
immediately. When messages are unavailable, one of the following situations
applies:

* By default, the calling task will wait forever for the message to
arrive.

* Specifying the NOWAIT option forces an immediate return
with an error status code.

* Specifying a timeout limits the period the task will wait before
returning with an error status.

If the task waits for a message, then it is placed in the message queue's task
wait queue in either FIFO or task priority order. All tasks waiting on a message
queue are returned an error code when the message queue is deleted.

8.3.4 Sending a Message

Messages can be sent to a queue with the qsend and qurgent directives. These
directives work identically when tasks are waiting to receive a message. A task
is removed from the task waiting queue, unblocked, and the message is copied
to a waiting task's message buffer.

When no tasks are waiting at the queue, qsend places the message at the rear
of the message queue, while qurgent places the message at the front of the

75

queue. The message is copied to a RTEMS message buffer and then placed in
the message queue. Neither directive can successfully send a message to a full
queue.

8.3.5 Broadcasting a Message

The q broadcast directive sends the same message to every task waiting on the
specified message queue as an atomic operation. The message is copied to each
waiting task's message buffer and each task is unblocked. The number of tasks
which were unblocked is returned to the caller.

8.3.6 Message Queue Deletion

The q-delete directive removes a message queue from the system and frees its
control block. A message queue can be deleted by any task that knows the
message queue's ID. As a result of this directive, all tasks blocked waiting to
receive a message from the message queue will be readied and returned a status
code which indicates that the message queue was deleted. Any subsequent
references to the message queue's name and ID are invalid. Any messages
waiting at the message queue are also deleted and deallocated.

8.4 Directives

This section details the message manager's directives. A subsection is dedicated
to each of this manager's directives and describes the calling sequence, related
constants, usage, and status codes.

76

8.4.1 QCREATE - Create a queue

CALLING SEQUENCE:

dir status q_create(name, count, attr, &qid

INPUT:

objname name; /* user-defined name */
unsigned32 count; /* max message count */
unsigned32 attr; /* queue attributes */
objid *qid; /* queue id */

DIRECTIVE STATUS CODES:

SUCCESSFUL queue created successfully
ETOOMANY too many queues created
EUNSATISFIED out of message buffers
ENOMP multiprocessing not configured
ETOOMANY too many global objects

DESCRIPTION:

This directive creates a message queue which resides on the local node with the
user-defined name specified in name. For control and maintenance of the
queue, RTEMS allocates and initializes a QCB. The RTEMS-assigned queue
id, returned in qid, is used to access the message queue.

Specifying PRIORITY in attr causes tasks waiting for a message to be serviced
according to task priority. When FIFO is specified, waiting tasks are serviced
in First In-First Out order.

If LIMIT is specified in attr, then a limit is fixed on the maximum number of
message buffers that can be contained in the queue. Buffers are dynamically
allocated from the system message buffer pool as needed. The count parameter
is disregarded if NOLIMIT is specified.

NOTES:

This directive will not cause the calling task to be preempted.

If the LIMIT option is selected and count has a value of zero, then the qsend
and q-urgent directives will fail unless one or more tasks are already waiting on
the queue.

77

The following message queue attribute constants are defined by RTEMS:

CONSTANT DESCRIPTION DEFAULT

FIFO tasks wait by FIFO *

PRIORITY tasks wait by priority

NOLIMIT unlimited queue size *

LIMIT limit queue size to count

LOCAL local message queue

GLOI;AL global message queue

Message queues should not be made global unless remote tasks must interact
with the created message queue. This is to avoid the system overhead incurred
by the creation of a global message queue. When a global message queue is
created, the message queue's name and id must be transmitted to every node
in the system for insertion in the local copy of the global object table.

The total number of global objects, including message queues, is limited by the
num-gobjects field in the configuration table.

78

8.4.2 QIDENT - Get ID of a queue

CALLING SEQUENCE:

dirstatus q_ident(name, node, &qid)

INPUT:

obj_name name; /* user-defined name */

unsigned32 node; /* node(s) to search */

OUTPUT:

objid *qid; /* queue id */

DIRECTIVE STATUS CODES:

SUCCESSFUL queue identified successfully
ENAME queue name not found
ENODE invalid node id

DESCRIPTION:

This directive obtains the queue id associated with the queue name specified in
name. If the queue name is not unique, then the queue id will match one of the
queues with that name. However, this queue id is not guaranteed to correspond
to the desired queue. The queue id is used with other message related directives
to access the message queue.

NOTES:

This directive will not cause the running task to be preempted.

If node is ALL NODES, all nodes are searched with the local node being
searched first. All other nodes are searched with the lowest numbered node
searched first.

If node is a valid node number which does not represent the local node, then
only the message queues exported by the designated node are searched.

This directive does not generate activity on remote nodes. It accesses only the
local copy of the global object table.

79

8.4.3 0_DELETE - Delete a queue

CALLING SEQUENCE:

dirstatus qdelete(qid

INPUT:

objid qid; /* queue id */

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL queue deleted successfully
EID invalid queue id
EREMOTE cannot delete remote queue

DESCRIPTION:

This directive deletes the message queue specified by qid. Any tasks that are
waiting on this queue are unblocked with an error code for a deleted queue. If
no tasks are waiting, but the queue contains messages, then RTEMS returns
these message buffers back to the system message buffer pool. The QCB for
this queue is reclaimed by RTEMS.

NOTES:

The calling task will be preempted if its preemption mode is enabled and one
or more local tasks with a higher priority than the calling task are waiting on
the deleted queue. The calling task will NOT be preempted if the tasks that
are waiting are remote tasks.

The calling task does not have to be the task that created the queue, although
the task and queue must reside on the same node.

When the queue is deleted, any messages in the queue are returned to the free
message buffer pool. Any information stored in those messages is lost.

When a global message queue is deleted, the message queue id must be
transmitted to every node in the system for deletion from the local copy of the
global object table.

Proxies, used to represent remote tasks, are reclaimed when the message queue
is deleted.

80

8.4.4 QSEND - Put message at rear of a queue

CALLING SEQUENCE:

dirstatus qsend(qid, buffer

INPUT:

objid qid; /* queue id
long (*buffer) [4]; /* message buffer pointer */

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL message sent successfully
EJID invalid queue id
EUNSATISFIED out of message buffers
ETOOMANY queue's limit has been reached

DESCRIPTION:

This directive sends the message contained in buffer to the queue specified by
qid. If a task is waiting at the queue, then the message is copied to the waiting
task's buffer and the task is unblocked. If no tasks are waiting at the queue,
then the message is copied to a message buffer which is obtained from RTEMS'
message buffer pool. The message buffer is then placed at the rear of the queue.

NOTES:

This directive supports local operations only.

The calling task will be preempted if it has preemption enabled and a higher
priority task is unblocked as the result of this directive.

Sending a message to a global message queue which does not reside on the local
node will generate a request to the remote node to post the message on the
specified message queue.

If the task to be unblocked resides on a different node from the message queue,
then the message is forwarded to the appropriate node, the waiting task is
unblocked, and the proxy used to represent the task is reclaimed.

81

8.4.5 OQURGENT - Put message at front of a queue

CALLING SEQUENCE:
dirstatus q_urgent(qid, buffer)

INPUT:

objid qid; /* queue id */
long (*buffer) [4); /* message buffer pointer */

OUTPUT: NONE

DIRECTIVE STATUS CODES:
SUCCESSFUL message sent successfully
EID invalid queue id
EUNSATISFIED out of message buffers
ETOOMANY queue's limit has been reached

DESCRIPTION:

This directive sends the message contained in buffer to the queue specified by
qid. If a task is waiting on the queue, then the message is copied to the task's
buffer and the task is unblocked. If no tasks are waiting on the queue, then the
message is copied to a message buffer which is obtained from RTEMS' message
buffer pool. The message buffer is then placed at the front of the queue.

NOTES:

This directive supports local operations only.

The calling task will be preempted if it has preemption enabled and a higher
priority task is unblocked as the result of this directive.

Sending a message to a global message queue which does not reside on the local
node will generate a request telling the remote node to post the message on the
specified message queue.

If the task to be unblocked resides on a different node from the message queue,
then the message is forwarded to the appropriate node, the waiting task is
unblocked, and the proxy used to represent the task is reclaimed.

82

8.4.6 QBROADCAST - Broadcast N messages to a queue

CALLING SEQUENCE:

dirstatus qbroadcast(qid, buffer, &count)

INPUT:

obj-id qid; /* queue id */
long (*buffer) [4]; /* message buffer pointer */

OUTPUT:

unsigned32 *count; /* tasks made ready */

DIRECTIVE STATUS CODES:

SUCCESSFUL message broadcasted successfully
EJID invalid queue id

DESCRIPTION:

This directive causes all tasks that are waiting at the queue specified by qid to
be unblocked with the message contained in buffer. Before a task is unblocked,
the message in buffer is copied to that task's message buffer. The number of
tasks that were unblocked is returned in count.

NOTES:

The calling task will be preempted if it has preemption enabled and a higher
priority task is unblocked as the result of this directive.

The cost of this directive is directly related to the number of tasks waiting on
the message queue, although it is more efficient than the equivalent number of
invocations of qsend.

Broadcasting a message to a global message queue which does not reside on the
local node will generate a request telling the remote node to post the message
on the specified message queue.

When a task is unblocked which resides on a different node from the message
queue, a copy of the message is -forwarded to the appropriate node, the waiting
task is unblocked, and the proxy used to represent the task is reclaimed.

83

8.4.7 QRECEIVE - Receive message from a queue

CALLING SEQUENCE:

dirstatus q.receive(qid, buffer, options, timeout)

INPUT:

objid qid; /* queue id */
long (*buffer) [4]; /* message buffer pointer */
unsigned32 options; /* receive options */
interval timeout; /* wait interval */

OUTPUT: NONE

DIRECTIVE STATUS CODES:
SUCCESSFUL message received successfully
EjD invalid queue id
E_UNSATISFIED queue is empty
ETIMEOUT timed out waiting for message
EDELETE queue deleted while waiting

DESCRIPTION:

This directive receives a message from the message queue specified in qid. The
WAIT and NOWAIT options of the options parameter allow the calling task to
specify whether to wait for a message to become available or return
immediately. For either option, if there is at least one message in the queue,
then it is copied to buffer and this directive returns immediately with a
successful return code.

If the calling task chooses to return immediately and the queue is empty, then
a status code indicating this condition is returned. If the calling task chooses to
wait at the message queue and the queue is empty, then the calling task is placed
on the message wait queue and blocked. If the queue was created with the
PRIORITY option specified, then the calling task is inserted into the wait queue
according to its priority. But, if the queue was created with the FIFO option
specified, then the calling task is placed at the rear of the wait queue.

A task choosing to wait at the queue can optionally specify a timeout value in
the timeout parameter. The timeout parameter specifies the maximum
interval to wait before the calling task desires to be unblocked. If it is set to
NOTIMEOUT, then the calling task will wait forever.

84

NOTES:

The following message receive option constants are defined by RTEMS:

CONSTANT DESCRIPTION DEFAULT

WAIT wait for message *

NOWAIT do NOT wait for message

Receiving a message from a global message queue which does not reside on the
local node will generate a request to the remote node to obtain a message from
the specified message queue. If no message is available and WAIT was specified,
then the task must be blocked until a message is posted. A proxy is allocated
on the remote node to represent the task until the message is posted.

85

8.4.8 QFLUSH - Flush all messages on a queue

CALLING SEQUENCE:

dir sLatus qflush(qid, &count

INPUT:

objid qid; /* queue id */

OUTPUT:

unsigned32 *count; /* messages flushed */

DIRECTIVE STATUS CODES:

SUCCESSFUL message received successfully
E_ID invalid queue id

DESCRIPTION:

This directive removes all pending messages from the specified queue qid. The
number of messages removed is returned in count. If no messages are present
on the queue, count is set to zero.

NOTES:

Flushing all messages on a global message queue which does not reside on the
local node will generate a request to the remote node to actually flush the
specified message queue.

86

...... Event Manager

9.1 Introduction

The event manager provides a high performance method of intertask
communication and synchronization. The directives provided by the event
manager are:

Name Directive Description

ev-send Send event set to a task

ev receive Receive event condition

9.2 Background

9.2.1 Event Sets

An event flag is used by a task (or ISR) to inform another task of the occurrence
of a significant situation. Thirty-two event flags are associated with each task.
A collection of one or more event flags is referred to as an event set. The
application developer should remember the following key characteristics of
event operations when utilizing the event manager:

" Events provide a simple synchronization facility.

" Events are aimed at tasks.

" Tasks can wait on more than one event simultaneously.

87

" Events are independent of one another.

" Events do not hold or transport data.

" Events are not queued. In other words, if an event is sent more
than once before being received, the second and subsequent
send operations have no effect.

An event set is posted when it is directed (or sent) to a task. A pending event
is an event that has been posted but not received. An event condition is used
to specify the events which the task desires to receive and the algorithm which
will be used to determine when the request is satisfied. An event condition is
satisfied based upon one of two algorithms which are selected by the user. The
ANY algorithm states that an event condition is satisfied when at least a single
requested event is posted. The ALL algorithm states that an event condition
is satisfied when every requested event is posted.

9.2.2 Building an Event Set or Condition

An event set or condition is built by a bitwise OR of the desired events. The set
of valid events is EVENT(} through EVENT 31. If an event is not explicitly
specified in the set or condition, then it is not present.

For example, when sending the event set consisting of EVENT 6, EVENT_15,
and EVENT_31, the event parameter to the ev.send directive should be
EVENT_61 EVENT-15 I EVENT31.

9.2.3 Building a Flag

In general, a flag is built by a bitwise OR of the desired options. The set of valid
options is provided in the description of the evyreceive directive. An option
listed as a default is not required to appear in the option OR list, although it is
a good programming practice to specify default options. If all defaults are
desired, the option DEFAULTS should be specified on this call.

This example demonstrates the flag parameter needed to poll for all events in
a particular event condition to arrive. The flag parameter should be
ALL INOWAIT or NOWAIT. The flag parameter can be set to NOWAIT
because ALL is the default condition for ev receive.

88

9.3 Operations

9.3.1 Sending an Event Set

The ev send directive allows a task (or an ISR) to direct an event set to a target
task. Based upon the state of the target task, one of the following situations
applies:

* Target Task is Blocked Waiting for Events

- If the waiting task's input event condition is sat-
isfied, then the task is made ready for execution.

- If the waiting task's input event condition is not
satisfied, then the event set is posted but left
pending and the task remains blocked.

" Target Task is Not Waiting for Events

- The event set is posted and left pending.

9.3.2 Receiving an Event Set

The ev receive directive is used by tasks to accept a specific input event
condition. The task also specifies whether the request is satisfied when all
requested events are available or any single requested event is available. If the
requested event condition is satisfied by pending events, then a successful
return code and the satisfying event set are returned immediately. If the
condition is not satisfied, then one of the following situations applies:

* By default, the calling task will wait forever for the event
condition to be satisfied.

" Specifying the NOWAIT option forces an imme&ate return
with an error status code.

* Specifyinga timeout limits the period the task will wait before
returning with an error status code.

89

9.3.3 Determining the Pending Event Set

A task can determine the pending event set by calling the evreceive directive
with a value of CURRENT for the input event condition. The pending events
are returned to the calling task but the event set is left unaltered.

9.4 Directives

This section details the event manager's directives. A subsection is dedicated
to each of this manager's directives and describes the calling sequence, related
constants, usage, and status codes.

90

9.4.1 EV-SEND - Send event set to a task

CALLING SEQUENCE:

dir status evsend(tid, event)

INPUT:

objid tid; /* task id */
event-set event; /* event set to send */

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL event set sent successfully
EID invalid task id

DESCRIPTION:

This directive sends an event set, event, to the task specified by tid. If a blocked
task's input event condition is satisfied by this directive, then it will be made
ready. If its input event condition is not satisfied, then the events satisfied are
updated and the events not satisfied are left pending. If the task specified by
tid is not blocked waiting for events, then the events sent are left pending.

NOTES:

This directive supports local operations only.

Specifying SELF for tid results in the event set being sent to the calling task.

Identical events sent to a task are not queued. In other words, the second, and
subsequent, posting of an event to a task before it can perform an evreceive
has no effect.

The calling task will be preempted if it has preemption enabled and a higher
priority task is unblocked as the result of this directive.

Sending an event set to a global task which does not reside on the local node
will generate a request telling the remote node to senC the event set to the
appropriate task.

91

9.4.2 EV RECEIVE - Receive event condition

CALLING SEQUENCE:

dirstatus evreceive(eventin,options,timeout,&eventout)

INPUT:

event-set eventin; /* input event cordition */
uisigned32 options; /* receive options */
interval timeout; /* wait interval

OUTPUT:

eventset *eventout; /* output event set */

DIRECTIVE STATUS CODES:

SUCCESSFUL event received successfully
EUNSATISFIED input event not satisfied (NOWAIT)
ETIMEOUT t* ned out waiting for event

DESCRIPTION:

This directive attempts to receive the event condition specified in eventin. If
eventin is set to CURRENT, then the current pending events are returned in
eventout and left pending. The WAIT and NOWAIT options in the options
parameter are used to specify whether or not the task is willing to wait for the
event condition to be satisfied. EV.ANY and EVALL are used in the options
parameter are used to specify whether a single event or the complete event set
is necessary to satisfy the event condition. The eventout parameter is returned
to the calling task with the value that corresponds to the events in eventin that
were satisfied.

If pending events satisfy the event condition, then eventout is set to the satisfied
events and the pending events in the event condition are cleared. If the event
condition is not satisfied and NOWAIT is specified, then eventout is set to the
currently satisfied events. If the calling task chooses to wait, then it will block
waiting for the event condition.

If the calling task must wait for the event condition to be satisfied, then the
timeout parameter is used to specify the maximum interval to wait. If it is set
to NOTIMEOUT, then the calling task will wait forever.

92

NOTES:

This directive only affects the events specified in eventin. Any pending events
that do not correspond to any of the events specified in eventin will be left
pending.

The following event receive option constants are defined by RTEMS;

CONSTANT DESCRIPTION DEFAULT

WAIT task will wait for event *

NOWAIT task should not wait

EV.ALL return after all events

EV.ANY return after any events

93/(94 blank)

10

*Signal Manager

10.1 Introduction

The signal manager provides the capabilities required for asynchronous
communication. The directives provided by the signal manager are:

Name Directive Description

as-catch Establish an ASR

as-send Send signal set to a task

as-enter Enter an ASR

as return Return from an ASR

10.2 Background

10.2.1 Definitions

The signal manager allows a task to optionally define an asynchronous signal
routine (ASR). An ASR is to a task what an ISR is to an application's set of tasks.
When the processor is interrupted, the execution of an application is also
interrupted and an ISR is given control. Likewise, when a signal is sent to a
task, that task's execution path will be "interrupted" by the ASK Sending a
signal to a task has no effect on that task's current execution state.

95

A signal flag is used by a task (or ISR) to inform another task of the occurrence
of a significant situation. Thirty-two signal flags are associated with each task.
A collection of one or more signals is referred to as a signal set. A signal set is
posted when it is directed (or sent) to a task. A pending signal is a signal that
has been sent to a task with a valid ASH, but has not been processed by that
task's ASR.

10.2.2 A Comparison of ASRs and ISRs

The format of an ASR is similar to that of an ISR with the following exceptions:

* An ISR must invoke the i-enter directive immediately upon
entry, while an ASR must invoke the as-enter directive.

* ISRs are scheduled by the processor hardware. ASRs are
scheduled by RTEMS.

* When an ISR is invoked, an interrupt stack frame has been built
by the CPU When an ASR is invoked, a signal stack frame
(SSF) has been built by RTEMS which contains the signal set
and the interrupted task's mode.

Signal Set j Ox0

Task's Modej 0x4

Figure 10-1 Signal Stack Frame

* An ISR exits bycallingtheireturn directive, while anASR exits
by calling the as-return directive.

10.2.3 Building a Signal Set

A signal set is built by a bitwise OR of the desired signals. The set of valid signals
is SIGNAL_0 through SIGNAL_31. If a signal is not explicitly specified in the
set or condition, then it is not present.

This example demonstrates the signal parameter used when sending the signal
set consisting or SIGNAL6, SIGNAL_15, and SIGNAL_31. The signal
parameter provided to the assend directive should be
SIGNAL_61 SIGNAL- 5 I SIGNAk3l.

96

10.2.4 Building a Mode

In general, a mode is built by a bitwise OR of the desired options. The set of
valid mode options is the same as those allowed with the t-create and tmode
directives. A complete list of mode options is provided in the description of the
as catch directive. An option listed as a default is not required to appear in the
option OR list, although it is a good programming practice to specify default
options. If all defaults are desired, the option DEFAULTS should be specified
on this call.

This example demonstrates the mode parameter used with the as-catch to
establish an ASR which executes at interrupt level three and is non-preemptible.
The mode should be set to INTR(3) I NOPREEMPT to indicate the desired
processor mode and interrupt level.

10.3 Operations

10.3.1 Establishing an ASR

The ascatch directive establishes an ASR for the calling task. The address of
the ASR and its execution mode are specified to this directive. The ASR's mode
is distinct from the task's mode. For example, the task may allow preemption,
while that task's ASR may have preemption disabled. Until a task calls as-catch
the first time, its ASR is invalid, and no signal sets can be sent to the task.

A task may invalidate its ASR and discard all pending signals by calling ascatch
with a value of NULL ASR for the ASR's address. When a task's ASR is invalid,
new signal sets sent to this task are discarded.

A task may disable ASR processing (NOASR) via the t-mode directive. When a
task's ASR is disabled, the signals sent to it are left pending to be processed later
when the ASR is enabled.

Any directive that can be called from a task can also be called from an ASK A
task is only allowed one active ASR Thus, each call to as-catch replaces the
previous one.

Normally, signal processing is disabled for the ASR's execution mode, but if
signal processing is enabled for the ASH, the ASR must be reentrant.

97

10.3.2 Sending a Signal Set

The as send directive allows both tasks and ISRs to send signals to a target task.
The target task and a set of signals are specified to the assend directive. The
sending of a signal to a task has no effect on the execution state of that task. If
the task is not the currently running task, then the signals are left pending and
processed by the task's ASR the next time the task is dispatched to run. The
ASR is executed immediately before the task is dispatched. If the currently
running task sends a signal to itself or is sent a signal from an ISR, its ASR is
immediately dispatched to run provided signal processing is enabled.

If an ASR with signals enabled is preempted by another task or an ISR and a
new signal set is sent, then a new copy of the ASR will be invoked, nesting the
preempted ASR. Upon completion of processing the new signal set, control will
return to the preempted ASR In this situation, the ASR should be reentrant.

Like events, identical signals sent to a task are not queued. In other words,
sending the same signal multiple times to a task (without any intermediate
signal processing occurring for the task), has the same result as sending that
signal to that task once.

10.3.3 Entering an ASR

The as enter directive is provided to increase the similarity between ASRs and
ISRs. This directive returns an error code if the caller is not an ASR

10.3.4 Returning from an ASR

The as-return directive is used to restore the mode and execution path of the
interrupted task (or ASR) to the correct context. It must be invoked from
assembly language and will not return if actually invoked from an ASR If this
directive is invoked from outside an ASR, then an error code will be returned.

10.3.5 Format of an ASR

Asynchronous signal were designed to provide the capability to generate
software interrupts. The processing of software interrupts parallels that of
hardware interrupts. As a result, the differences between the formats of ASRs
and ISRs are limited to the use of as-enter and asreturn to denote entry and
exit instead of i-enter and i return. For an example of ASR, please refer to the
example ISR given in the Interrupt Manager chapter.

98

10.4 Directives

This section details the signal manager's directives. A subsection is dedicated
to each of this manager's directives and describes the calling sequence, related
constants, usage, and status codes.

99

10.4.1 ASCATCH - Establish an ASR

CALLING SEQUENCE:

dirstatus as_catch(asraddr, mode)

INPUT:
asrptr asraddr; /* ASR entry point */
unsigned32 mode; /* mode for ASR */

OUTPUT: NONE

DIRECTIVE STATUS CODES:
SUCCESSFUL always successful

DESCRIPTION:

This directive establishes an asynchronous signal routine (ASR) for the calling
task. The asraddr parameter specifies the entry point of the AS& If asraddr
is NULL ASR, the ASR for the calling task is invalidated and all pending signals
are cleared. Any signals sent to a task with an invalid ASR are discarded. The
mode parameter specifies the execution mode for the AS& This execution mode
supersedes the task's execution mode while the ASR is executing.

NOTES:

This directive will not cause the calling task to be preempted.

The following task mode constants are defined by RTEMS:

CONSTANT DESCRIPTION DEFAULT

PREEMPT enable preemption *

NOPREEMPT disable preemption

NOTSLICE disable timeslicing *

TSUCE enable timeslicing

ASR enable ASR processing *

NOASR disable ASR processing

INTR(O) enable all interrupts *

INTR(n) execute at interrupt level n

100

10.4.2 AS-SEND - Send signal set to a task

CALLING SEQUENCE:

dirstatus as-send(tid, signal)

INPUT:

obj-id tid; /* task id */
signal-set signal; /* signal set to send */

OUTPUT: NONE

DIRECTIVE STATUS CODES:
SUCCESSFUL signal sent successfully
EID task id invalid
ENOTDEFINED ASR invalid

DESCRIPTION:

This directive sends a signal set to the task specified in tid. The signal
parameter contains the signal set to be sent to the task.

If a caller sends a signal set to a task with an invalid ASR, then an error code is
returned to the caller. If a caller sends a signal set to a task whose ASR is valid
but disabled, then the signal set will be caught and left pending for the ASR to
process when it is enabled. If a caller sends a signal set to a task with an ASR
that is both valid and enabled, then the signal set is caught and the ASR will
execute the next time the task is dispatched to run.

NOTES:

This directive supports local operations only.

Sending a signal set to a task has no effect on that task's state. If a signal set is
sent to a blocked task, then the task will remain blocked and the signals will be
processed when the task becomes the running task.

Sending a signal set to a global task which does not reside on the local node will
generate a request telling the remote node to scnd the signal set to the specified
task.

101

10.4.3 AS-ENTER - Enter an ASR

CALLING SEQUENCE:

dir status asenter()

INPUT: NONE

OUTPUT: NONE

DIRECTIVE STATUS CODES:

ECALLED Not called from an ASR

DESCRIPTION:

This directive is called upon entering an ASR to inform the RTEMS executive
an ASR has been entered. All ASR's must call the asenter and as-return
directives. The ASR must restore all saved registers including floating point
registers before the call to asreturn is made.

NOTES:

This directive is callable from an ASR only.

This directive is callable only from assembly language.

The register save requirements for this directive are identical to those of the
i-enter directive.

If the ASR utilizes floating point instructions, then it must save and restore the
floating point coprocessor's complete context.

102

10.4.4 AS-RETURN - Return from an ASR

CALLING SEQUENCE:

dirstatus asreturn()

INPUT: NONE

OUTPUT: NONE

DIRECTIVE STATUS CODES:
ECALLED Not called from an ASR

DESCRIPTION:

This directive is called by an ASR to return from an ASR The ASR must call
this directive to return tc the task's correct context.

The ASR must restore all saved registers including floating point registers
before the call to as-return is made.

NOTES:

When called from an ASH, this directive does not return. Otherwise, an error
code is returned.

103/(104 blank)

11
0
n

2n
3n
4n5n

6n Partition Manager
7n

11.1 Introduction

The partition manager provides facilities to dynamically allocate memory in
fixed-size units. The directives provided by the region manager are:

Name Directive Description

ptcreate Create a partition

ptident Get ID of a partition

ptdelete Delete a partition

pt_getbuf Get buffer from a partition

ptretbuf Return buffer to a partition

11.2 Background

11.2.1 Definitions

A partition is a physically contiguous memory area divided into fixed-size buffers
that can be dynamically allocated and deallocated.

Partitions are managed and maintained as a list of buffers. Buffers are obtained
from the front of the partition's free buffer chain and returned to the rear of
the same chain. When a buffer is on the free buffer chain, RTEMS uses eight

105

bytes of each buffer as the free buffer chain. When a buffer is allocated, the
entire buffer is available for application use. Therefore, modifying memory that
is outside of an allocated buffer could destroy the free buffer chain or the
contents of an adjacent allocated buffer.

11.2.2 Building an Attribute Set

In general, an attribute set is built by a bitwise OR of the desired attributes.
The set of valid attributes is provided in the description of the ptcreate
directive. An attribute listed as a default is not required to appear in the
attribute OR list, although it is a good programming practice to specify default
attributes. If all defaults are desired, the attribute DEFAULTS should be
specified on this call. The attr parameter should be GLOBAL to indicate that
the partition is to be known globally.

11.3 Operations

11.3.1 Creating a Partition

The pt create directive creates a partition with a user-specified name. The
partition's name, starting address, length and buffer size are all specified to the
pt create directive. RTEMS allocates a Partition Control Block (PTCB) from
the PTCB free list. This data structure is used by RTEMS to manage the newly
created partition. The number of buffers in the partition is calculated based
upon the specified partition length and buffer size, and returned to the calling
task along with a unique partition ID.

11.3.2 Obtaining Partition IDs

When a partition is created, RTEMS generates a unique partition ID and
assigned it to the created partition until it is deleted. The partition ID may be
obtained by either of two methods. First, as the result of an invocation of the
pt-create directive, the partition ID is stored in a user provided location. Second,
the partition ID may be obtained later using the pt.ident directive. The
partition ID is used by other partition manager directives to access this partition.

11.3.3 Acquiring a Buffer

A buffer can be obtained by calling the pt.getbuf directive. If a buffer is
available, then it is returned immediately with a successful return code.

106

Otherwise, an unsuccessful return code is returned immediately to the caller.

Tasks cannot block to wait for a buffer to become available.

11.3.4 Releasing a Buffer

Buffers are returned to a partition's free buffer chain with the pt..retbuf
directive. This directive returns an error status code if the returned buffer was
not previously allocated from this partition.

11.3.5 Deleting a Partition

The pt delete directive allows a partition to be removed and returned to
RTEMS. When a partition is deleted, the PTCB for that partition is returned
to the PTCB free list. A partition with buffers still allocated cannot be deleted.
Any task attempting to do so will be returned an error status code.

11.4 Directives

This section details the partition manager's directives. A subsection is dedicated
to each of this manager's directives and describes the calling sequence, related
constants, usage, and status codes.

107

11.4.1 PTCREATE - Create a partition

CALLING SEQUENCE:

dir status pt-create (name,paddr, lengtl,bsize, attr, &ptid)

INPUT:

obj_name name; /* user-defined name *1
unsigned8 *paddr; /* physical start address */
unsigned32 length; /* physical length in bytes */
unsigned32 bsize; /* buffer size in bytes */
unsigned32 attr; /* partition attributes

OUTPUT:

objid *ptid; /* id assigned to partition */

DIRECTIVE STATUS CODES:

SUCCESSFUL region created successfully
ETOOMANY too many partitions created
EADDRESS address not on long-word boundary
ESIZE buffer size not a multiple of 4
E NOMP multiprocessing not configured
ETOOMANY too many global objects

DESCRIPTION:

This directive creates a partition of fixed size buffers from a physically
contiguous memory space. The assigned partition id is returned in ptid. This
partition id is used to access the partition with other partition related directives.
For control and maintenance of the partition, RTEMS allocates a PTCB from
the local PTCB free pool and initializes it.

NOTES:

This directive will not cause the calling task to be preempted.

The paddr and bsize parameters must be multiples of four (long-word aligned).

Memory from the partition is not used by RTEMS to store the Partition Control
Block.

The following partition attribute constants are defined by RTEMS:

108

CONSTANT DESCRIPTION DEFAULT

LOCAL local partition

GLOBAL global partition

The PTCB for a global partition is allocated on the local node. The memury
space used for the partition must reside in shared memory.

Partitions should not be made global unless remote tasks must interact with
the partition. This is to avoid the overhead incurred by the creation of a global
partition. When a global partition is created, the partition's name and id must
be transmitted to every node in the system for insertion in the local copy of the
global object table.

The total number of global objects, including partitions, is limited by the
num-gobjects field in the Configuration Table.

109

11.4.2 PTIDENT - Get ID of a partition

CALLING SEQUENCE:

dirstatus pt_ident(name, node, &ptid)

INPUT:

obj name name; /* user-defined name */
unsigned32 node; /* node(s) to search */

OUTPUT:

obj id *ptid; /* partition id */

DIRECTIVE STATUS CODES:

SUCCESSFUL partition identified successfully
ENAME partition name not found
ENODE invalid node id

DESCRIPTION:

This directive obtains the partition id associated with the partition name. If
the partition name is not unique, then the partition id will match one of the
partitions with that name. However, this partition id is not guaranteed to
correspond to the desired partition. The partition id is used with other partition
related directives to access the partition.

NOTES:

This directive will not cause the running task to be preempted.

If node is ALL-NODES, all nodes are searched with the local node being
searched first. All other nodes are searched with the lowest numbered node
searched first.

If node is a valid node number which does not represent the local node, then
only the partitions exported by the designated node are searched.

This directive does not generate activity on remote nodes. It accesses only the
local copy of the global object table.

110

11.4.3 PTDELETE - Delete a partition

CALLING SEQUENCE:

dirstatus pt delete(ptid)

INPUT:

objid ptid; /* partition id */

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL partition deleted successfully
EJD invalid partition id
EJiNUSE buffers still in use
EREMOTE cannot delete remote partition

DESCRIPTION:

This directive deletes the partition specified by ptid. The partition cannot be
deleted if any of its buffers are still allocated. The PTCB for the deleted
partition is reclaimed by RTEMS.

NOTES:

This directive will not cause the calling task to be preempted.

The calling task does not have to be the task that created the partition. Any
local task that knows the partition id can delete the partition.

When a global partition is deleted, the partition id must be transmitted to every
node in the system for deletion from the local copy of the global object table.

The partition must reside on the local node, even if the partition was created
with the GLOBAL option.

111

11.4.4 PTGETBUF - Get buffer from a partition

CALLING SEQUENCE:

dir status ptgetbuf(ptid, &bufaddr)

INPUT:

objid ptid; /* partition id */

OUTPUT:

unsigned8 **bufaddr; /* buffer address */

DIRECTIVE STATUS CODES:

SUCCESSFUL buffer obtained successfully
EID invalid partition id
EUNSATISFIED all buffers are allocated

DESCRIPTION:

This directive allows a buffer to be obtained from the partition specified in pticL
The address of the allocated buffer is returned in bufaddr.

NOTES:

This directive will not cause the running task to be preempted.

All buffers begin on a long-word boundary.

A task cannot wait on a buffer to become available.

Getting a buffer from a global partition which does not reside on the local node
will generate a request telling the remote node to allocate a buffer from the
specified partition.

112

11.4.5 PTRETBUF - Return buffer to a partition

CALLING SEQUENCE:
dir status pt_retbuf(ptid, bufaddr)

INPUT:
objid ptid; /* partition id */
unsigned8 *bufaddr; /* buffer to return */

OUTPUT: NONE

DIRECTIVE STATUS CODES:
SUCCESSFUL buffer returned successfully
E.1D invalid partition id
E-ADDRESS buffer address not in partition

DESCRIPTION:

This directive returns the buffer specified by bufaddr to the partition specified
by ptid.

NOTES:

This directive will not cause the running task to be preempted.

Returning a buffer to a global partition which does not reside on the local node
will generate a request telling the remote node to return the buffer to the
specified partition.

113/(114 blank)

12
segO

segl

seg2seg3 Region Manager

12.1 Introduction

The region manager provides facilities to dynamically allocate memory in
variable sized units. The directives provided by the region manager are:

Name Directive Description

rncreate Create a region

rnident Get ID of a region

rndelete Delete a region

rn getseg Get segment from a region

rnretseg Return segment to a region

12.2 Background

12.2.1 Definitions

A region makes up a physically contiguous memory space with user-defined
boundaries from which variable-sized segments are dynamically allocated and
deallocated. A segment is a variable size section of memory which is allocated
in multiples of a user-defined page size. This page size is required to be a
multiple of four greater than or equal to four. For example, if a request for a

115

350-byte segment is made in a region with 256-byte pages, then a 512-byte
segment is allocated.

Regions are organized as doubly linked chains of variable sized memory blocks.
Memory requests are allocated using a first-fit algorithm. If available, the
requester receives the number of bytes requested (rounded up to the next page
size). RTEMS requires some overhead from the region's memory for each
segment that is allocated. Therefore, an application should only modify the
memory of a segment that has been obtained from the region. The application
should NOT modify the memory outside of any obtained segments and within
the region's boundaries while the region is currently active in the system.

Upon return to the heap, the free block is coalesced with its neighbors (if free)
on both sides to produce the largest possible unused block.

12.2.2 Building an Attribute Set

In general, an attribute set is built by a bitwise OR of the desired attributes.
The set of valid attributes is provided in the description of the rcreate and
rn.getseg directives. An attribute listed as a default is not required to appear
in the attribute OR list, although it is a good programming practice to specify
default attributes. If all defaults are desired, the attribute DEFAULTS should
be specified on this call.

For example, the attr parameter should be PRIORITY to indicate that task
priority should be used as the task waiting queue discipline.

12.3 Operations

12.3.1 Creating a Region

The rn create directive creates a region with the user-defined name. The user
may select FIFO or task priority as the method for placing waiting tasks in the
task wait queue. RTEMS allocates a Region Control Block (RNCB) from the
RNCB free list to maintain the newly created region. RTEMS also generates a
unique region ID which is returned to the calling task.

It is not possible to calculate the exact number of bytes available to the user
since RTEMS requires overhead for each segment allocated. For example, a
region with one segment that is the size of the entire region has more available
bytes than a region with two segments that collectively are the size of the entire
region. The reason is that the region with one segment requires only the

116

overhead for one segment, while the other region requires the overhead for two
segments.

Due to automatic coalescing, the number of segments in the region dynamically
changes. Therefore, the total overhead required by RTEMS dynamically
changes.

12.3.2 Obtaining Region IDs

When a region is created, RTEMS generates a unique region ID and assigns it
to the created region until it is deleted. The region ID may be obtained by either
of two methods. First, as the result of an invocation of the rncreate directive,
the region ID is stored in a user provided location. Second, the region ID may
be obtained later using the rn-ident directive. The region ID is used by other
region manager directives to access this region.

12.3.3 Acquiring a Segment

The rngetseg directive attempts to acquire a segment from a specified region.
If the region has enough available free memory, then a segment is returned
successfully to the caller. When the segment cannot be allocated, one of the
following situations applies:

" By default, the calling task will wait forever to acquire the
segment.

" Specifying the NOWAIT option forces an immediate return
with an error status code.

" Specifyinga timeout limits the interval the task will wait before
returning with an error status code.

If the task waits for the segment, then it is placed in the region's task wait queue
in either FIFO or task priority order. All tasks waiting on a region are returned
an error when the message queue is deleted.

12.3.4 Releasing a Segment

When a segment is returned to a region by the rn retseg directive, it is merged
with its unallocated neighbors to form the largest possible segment. The first
task on the wait queue is examined to determine if its segment request can now
be satisfied. If so, it is given a segment and unblocked. This process is repeated
until the first task's segment request cannot be satisfied.

117

12.3.5 Deleting a Region

A region can be removed from the system and returned to RTEMS with the
rn delete directive. When a region is deleted, its control block is returned to
the RNCB free list. A region with segments still allocated is not allowed to be
deleted. Any task attempting to do so will be returned an error.

12.4 Directives

This section details the region manager's directives. A subsection is dedicated
to each of this manager's directives and describes the calling sequence, related
constants, usage, and status codes.

118

12.4.1 RNCREATE - Create a region

CALLING SEQUENCE:
dir status

rncreate (name,paddr, length,pagesize,attr, &rnid

INPUT:

objname name; /* user-defined name */
unsigned8 *paddr; /* start address

unsigned32 length; /* length in bytes

unsigned32 pagesize; /* page size in bytes */

unsigned32 attr; /* region attributes */

OUTPUT:

objid *rnid; /* region id */

DIRECTIVE STATUS CODES:
SUCCESSFUL region created successfully
EADDRESS address not on long-word boundary
ETOOMANY too many regions created
ESIZE invalid page size

DESCRIPTION:

This directive creates a region from a physically contiguous memory space. The
assigned region id is returned in mid. This region id is used as an argument to
other region related directives to access the region.

For control and maintenance of the region, RTEMS allocates and initializes an
RNCB from the RNCB free pool. Thus memory from the region is not used to
store the RNCB. However, some overhead within the region is required by
RTEMS each time a segment is constructed in the region.

Specifying PRIORITY in attr causes tasks waiting for a segment to be serviced
according to task priority. Specifying FIFO in attr or selecting DEFAULTS will
cause waiting tasks to be serviced in First In-First Out order.

The paddr parameter must be long-word aligned. The pagesize parameter
must be a multiple of four greater than or equal to four.

119

NOTES:

This directive will not cause the calling task to be preempted.

The following region attribute constants are defined by RTEMS:

CONSTANT DESCRIPTION DEFAULT

FIFO tasks wait by FIFO

PRIORITY tasks wait by priority

120

12.4.2 RNIDENT - Get ID of a region

CALLING SEQUENCE:

dirstatus rnident(name, &rnid)

INPUT:

objname name; /* user-defined name */

OUTPUT:

objid *rnid; /* region id */

DIRECTIVE STATUS CODES:

SUCCESSFUL region identified successfully
ENAME region name not found

DESCRIPTION:

This directive obtains the region id associated with the region name to be
acquired. If the region name is not unique, then the region id will match one
of the regions with that name. However, this region id is not guaranteed to
correspond to the desired region. The region id is used to access this region in
other region related directives.

NOTES:

This directive will not cause the running task to be preempted.

121

12.4.3 RN DELETE - Delete a region

CALLING SEQUENCE:
dir status rndelete(rnid)

INPUT:

obj_id rnid; /* region id */

OUTPUT: NONE

DIRECTIVE STATUS CODES:
SUCCESSFUL region deleted successfully
EID invalid region id
EINUSE segments still in use

DESCRIPTION:

This directive deletes the region specified by rid. The region cannot be deleted
if any of its segments are still allocated. The RNCB for the deleted region is
reclaimed by RTEMS.

NOTES:

This directive will not cause the calling task to be preempted.

The calling task does not have to be the task that created the region. Any local
task that knows the region id can delete the region.

122

12.4.4 RNGETSEG - Get segment from a region

CALLING SEQUENCE:

dir status rngetseg(rnid, size, options, timeout, &segaddr)

INPUT:

objid rnid; /* region id */
unsigned32 size; /* segment size in bytes */
unsigned32 options; /* option set */
interval timeout; /* wait interval */

OUTPUT:

unsigned8 **segaddr; /* segment address */

DIRECTIVE STATUS CODES:
SUCCESSFUL segment obtained successfully
EID invalid region id
ESIZE request exceeds size of maximum segment
E_UNSATISFIED segment of requested size not available
E_TIMEOUT timed out waiting for segment

DESCRIPTION:

This directive obtains a variable size segment from the region specified by mid.
The address of the allocated segment is returned in segaddr. The WAIT and
NOWAIT options of the options parameter are used to specify whether the
calling tasks wish to wait for a segment to become available or return
immediately if no segment is available. For either option, if a sufficiently sized
segment is available, then the segment is successfully acquired by returning
immediately with the SUCCESSFUL status code.

If the calling task chooses to return immediately and a segment large enough
is not available, then an error code indicating this fact is returned. If the calling
task chooses to wait for the segment and a segment large enough is not available,
then the calling task is placed on the region's segment wait queue and blocked.
If the region was created with the PRIORITY option, then the calling task is
inserted into the wait queue according to its priucity. But, if the region was
created with the FIFO option, then the calling task is placed at the rear of the
wait queue.

123

The timeout parameter specifies the maximum interval that a task is willing
to wait to obtain a segment. If timeout is set to NOTIMEOUT, then the calling
task will wait forever.

NOTES:

The actual length of the allocated segment may be larger than the requested
size because a segment size is always a multiple of the region's pagesize.

The following segment acquisition option constants are defined by RTEMS:

CONSTANT DESCRIPTION DEFAULT

WAIT task may wait for segment *

NOWAIT task may not wait

124

12.4.5 RNRETSEG - Return segment to a region

CALLING SEQUENCE:
dirstatus rn-retseg(rnid, segaddr)

INPUT:

obj-id rnid; /* region id */
unsigned8 *segaddr; /* segment pointer */

OUTPUT: NONE

DIRECTIVE STATUS CODES:
SUCCESSFUL segment returned successfully
EID invalid region id
EADDRESS segment address not in region

DESCRIPTION:

This directive returns the segment specified by segaddr to the region specified
by rnid. The returned segment is merged with its neighbors to form the largest
possible segment. The first task on the wait queue is examined to determine if
its segment request can now be satisfied. If so, it is given a segment and
unblocked. This process is repeated until the first task's segment request
cannot be satisfied.

NOTES:

This directive will cause the calling task to be preempted if one or more local
tasks are waiting for a segment and the following conditions exist:

* a waiting task has a higher priority than the calling task

* the size of the segment required by the waiting task is less than
or equal to the size of the segment returned.

125/(126 blank)

13

Dual-Ported
Memory Manager

13.1 Introduction

The dual-ported memory manager provides a mechanism for converting
addresses between internal and external representations for multiple
dual-ported memory areas (DPMA). The directives provided by the dual-ported
memory manager are:

Name Directive Description

dp-create Create a port

dpident Get ID of a port

dpdelete Delete a port

dp_2internal Convert external to Internal address

dp_2external Convert Internal to external address

13.2 Background

A dual-ported memory area (DPMA) is an contiguous block of RAM owned by a
particular processor but which can be accessed by other processors in the system.
The owner accesses the memory using internal addresses, while other

127

processors must use external addresses. RTEMS defines a port as a particular
mapping of internal and external addresses.

There are two system configurations in which dual-ported memory is commonly
found. The first is tightly-coupled multiprocessor computer systems where the
dual-ported memory is shared between all nodes and is used for inter-node
communication. The second configuration is computer systems with intelligent
peripheral controllers. These controllers typically utilize the DPMA for
high-performance data transfers.

13.3 Operations

13.3.1 Creating a Port

The dpcreate directive creates a port into a DPMA with the user-defined name.
The user specifies the association between internal and external
representations for the port being created. RTEMS allocates a Dual-Ported
Memory Control Block (DPCB) from the DPCB free list to maintain the newly
created DPMA. RTEMS also generates a unique dual-ported memory port ID
which is returned to the calling task. RTEMS does not initialize the dual-ported
memory area or access any memory within it.

13.3.2 Obtaining Port IDs

When a port is created, RTEMS generates a unique port ID and assigns it to the
created port until it is deleted. The port ID may be obtained by either of two
methods. First, as the result of an invocation of the dp-create directive, the task
ID is stored in a user provided location. Second, the port ID may be obtained
later using the dp.ident directive. The port ID is used by other dual-ported
memory manager directives to access this port.

13.3.3 Converting an Address

The dp_2internal directive is used to convert an address from external to
internal representation for the specified port. The dp 2external directive is
used to convert an address from internal to external representation for the
specified port. If an attempt is made to convert an address which lies outside
the specified DPMA, then the address to be converted will be returned.

128

13.3.4 Deleting a DPMA Port

A port can be removed from the system and returned to RTEMS with the
dp delete directive. When a port is deleted, its control block is returned to the
DPCB free list.

13.4 Directives

This section details the dual-ported memory manager's directives. A subsection
is dedicated to each of this manager's directives and describes the calling
sequence, related constants, usage, and status codes.

129

13.4.1 DPCREATE - Create a port

CALLING SEQUENCE:

dirstatus dp create(name, intaddr, extaddr, length, &dpid)

INPUT:

objname name; /* user-defined name */
unsigned8 *intaddr; /* initial internal address */
unsigned8 *extaddr; /* initial external address */
unsigned32 length; /* area size in bytes */

OUTPUT:

objid *dpid; /* port id */

DIRECTIVE STATUS CODES:
SUCCESSFUL port created successfully
EADDRESS internal or external address not on long-word boundary
ETOOMANY too many DP memory areas created

DESCRIPTION:

This directive creates a port which resides on the local node for the specified
DPMA. The assigned port id is returned in dpid. This port id is used as an
argument to other dual-ported memory manager directives to convert addresses
within this DPMA.

For control and maintenance of the port, RTEMS allocates and initializes an
DPCB from the DPCB free pool. Thus memory from the dual-ported memory
area is not used to store the DPCB.

NOTES:

The intaddr and extaddr parameters must be long-word aligned.

This directive will not cause the calling task to be preempted.

130

13.4.2 DPIDENT - Get ID of a port

CALLING SEQUENCE:
dirstatus dpjident(name, &dpid)

INPUT:
objname name; /* user-defined name */

OUTPUT:

objid *dpid; /* port id */

DIRECTIVE STATUS CODES:
SUCCESSFUL port identified successfully
ENAME port name not found

DESCRIPTION:

This directive obtains the port id associated with the specified name to be
acquired. If the port name is not unique, then the port id will match one of the
DPMAs with that name. However, this port id is not guaranteed to correspond
to the desired DPMA. The port id is used to access this DPMA in other
dual-ported memory area related directives.

NOTES:

This directive will not cause the running task to be preempted.

131

13.4.3 DPDELETE - Delete a port

CALLING SEQUENCE:

dir status dpdelete(dpid)

INPUT:

objid dpid; /* port id */

OUTPUT: NONE

DIRECTIVE STATUS CODES:
SUCCESSFUL port deleted successfully
E_ID invalid port id

DESCRIPTION:

This directive deletes the dual-ported memory area specified by dpid. The
DPCB for the deleted dual-ported memory area is reclaimed by RTEMS.

NOTES:

This directive will not cause the calling task to be preempted.

The calling task does not have to be the task that created the port. Any local
task that knows the port id can delete the port.

132

13.4.4 DP_21NTERNAL - Convert external to Internal address

CALLING SEQUENCE:
dirstatus dp_2internal(dpid, extaddr, &intaddr)

INPUT:
obj-id dpid; /* port id */
unsigned8 *extaddr; /* address to convert */

OUTPUT:

unsigned8 **intaddr; /* internal address */

DIRECTIVE STATUS CODES:

SUCCESSFUL always successful

DESCRIPTION:

This directive converts a dual-ported memory address from external to internal
representation for the specified port. If the given external address is invalid for
the specified port, then the internal address is set to the given external address.

NOTES:

This directive is callable from an ISR

This directive will not cause the calling task to be preempted.

133

13.4.5 DP_.2EXTERNAL - Convert Internal to external address

CALLING SEQUENCE:

dirstatus dp_2external(dpid, intaddr, &extaddr)

INPUT:
objid dpid; /* port id */

unsigned8 *intaddr; /* address to convert */

OUTPUT:
unsigned8 **extaddr; /* external address */

DIRECTIVE STATUS CODES:
SUCCESSFUL always successful

DESCRIPTION:

This directive converts a dual-ported memory address from internal to external
representation so that it can be passed to owner of the DPMA represented by
the specified port. If the given internal address is an invalid dual-ported
address, then the external address is set to the given internal address.

NOTES:

This directive is callable from an ISI

This directive will not cause the calling task to be preempted.

134

14

I/0 Manager

14.1 Introduction

The input/output interface manager provides a well-defined mechanism for
accessing device drivers and a structured methodology for organizing device
drivers. The directives provided by the I/O manager are:

Name Directive Description

de init Initialize a device driver

de-open Open a device

de-close Close a device

deread Read from a device

do-write Write to a device

de-cntri Special device services

14.2 Background

14.2.1 Device Driver Table

Each application utilizing the RTEMS I/O manager must specify the address of
a Device Driver Table in its Configuration Table. This table contains each

135

device driver's entry points. Each device driver may contain the following entry

points:

* Initiahzation * Read

" Open 0 Write

" Close 0 Control

If the device driver does not support a particular entry point, then that entry in
the Configuration Table should be NULL-DRIVER. RTEMS will return
SUCCESSFUL as the executive's and device driver's return code for these
device driver entry points.

14.2.2 Major and Minor Device Numbers

Each call to the I/O manager must provide a device number as an argument.
This device number is a thirty-two bit unsigned entity composed of a major and
a minor device number. The most significant sixteen bits are the major number,
and the least significant sixteen bits compose the minor number. The major
number is the index of the requested driver's entry points in the Device Driver
Table, and is used to select a specific device driver. The exact usage of the minor
number is driver specific, but is commonly used to distinguish between a number
of devices controlled by the same driver.

14.2.3 Device Driver Environment

Application developers, as well as device driver developers, must be aware of
the following regarding the RTEMS I/O Manager:

31 1 15

Major Number Minor Number

Figure 14-1 Device Number Composition

136

* A device driver routine executes in the context of the invoking
task. Thus if the driver blocks, the invoking task block,.

* The device driver is free to change the modes of the invoking
task, although the driver should restore them to their original
values.

* Device drivers can NOT be invoked from ISRs.

* Only local device drivers are accessible through the I/0 man-
ager.

* A device driverroutine may invoke all other RTEMS directives,
including I/O directives, on both local and global objects.

Although the RTEMS I/O manager provides a framework for device drivers, it
makes no assumptions regarding the construction or operation of a device driver.

14.2.4 Device Driver Interface

When an application invokes an I/O manager directive, RTEMS determines
which device driver entry point must be invoked. The information passed by
the application to RTEMS is then passed to the correct device driver entry point.
RTEMS will invoke each device driver entry point with the following C calling
sequence:

void de entry(dev, argp, tid, rval)
unsigned32 dev; /* device number
unsigned8 *argp; /* parameter block address *1
obj id tid; /* ID of invoking task */
unsTgned32 *rval; /* driver's status area */

The format and contents of the parameter block are device driver and entry
point dependent.

It is recommended that a device driver avoid generating error codes which
conflict with those used by RTEMS. A common technique used to generate
driver specific error codes is to logically OR the driver's major number with an
error code.

14.2.5 Device Driver Initialization

RTEMS automatically initializes all device drivers when multitasking is
initiated via the init exec directive. RTEMS initializes the device drivers by
invoking each device driver initialization entry point with the following
parameters:

137

dev corresponds to the major device number for
this device driver with a minor device num-
ber of zero.

argp will point to the Configuration Table.

tid will contain zero.

The returned rval will be ignored by RTEMS. If the driver cannot successfully
initialize the device, then it should invoke the fatal error manager.

14.3 Operations

The I/O manager provides directives which enable the application program to
utilize device drivers in a standard manner. There is a direct correlation
between the RTEMS I/O manager directives and the underlying device driver
entry points.

14.4 Directives

This section details the I/O manager's directives. A subsection is dedicated to
each of this manager's directives and describes the calling sequence, related
constants, usage, and status codes.

138

14.4.1 DEINIT - Initialize a device driver

CALLING SEQUENCE:
dirstatus deinit(dev, argp, &rval)

INPUT:

unsigned32 dev; /* 32-bit device number */
unsigned8 *argp; /* address of a driver */

/* specific parameter block */

OUTPUT:

unsigned32 *rval; /* return value from driver */

DIRECTIVE STATUS CODES:
SUCCESSFUL successfully initialized
E_CALLED called from within an ISR
ENUMBER invalid major device number

DESCRIPTION:

This directive calls the device driver initialization routine specified in the Device
Driver Table for this major number. This directive is automatically invoked for
each device driver when multitasking is initiated via the init-exec directive.

A device driver initialization module is responsible for initializing all hardware
and data structures associated with a device. If necessary, it can allocate memory
to be used during other operations.

NOTES:

This directive may or may not cause the calling task to be preempted. This is
dependent on the device driver being initialized.

139

14.4.2 DEOPEN - Open a device

CALLING SEQUENCE:

dir status de_open(dev, argp, &rval)

INPUT:

unsigned32 dev; /* 32-bit device number
unsigned8 *argp; /* address of a driver */

/* specific parameter block */

OUTPUT:

unsigned32 *rval; /* return value from driver */

DIRECTIVE STATUS CODES:
SUCCESSFUL device successfully opened
ECALLED called from within an ISR
ENUMBER invalid major device number

DESCRIPTION:

This directive calls the device driver open routine specified in the Device Driver
Table for this major number. The open entry point is commonly used by device
drivers to provide exclusive access to a device.

NOTES:

This directive may or may not cause the calling task to be preempted. This is
dependent on the device driver being invoked.

140

14.4.3 DE_CLOSE - Close a device

CALLING SEQUENCE:

dir status de_close(dev, argp, &rval)

INPUT:

unsigned32 dev; /* 32-bit device number */
unsigned8 *argp; /* address of a driver */

/* specific parameter block */

OUTPUT:

unsigned32 *rval; /* return value from driver */

DIRECTIVE STATUS CODES:

SUCCESSFUL device successfully closed
E.CALLED called from within an ISR
E_NUMBER invalid major device number

DESCRIPTION:

This directive calls the device driver close routine specified in the Device Driver
Table for this major number. The close entry point is commonly used by device
drivers to relinquish exclusive access to a device.

NOTES:

This directive may or may not cause the calling task to be preempted. This is
dependent on the device driver being invoked.

141

14.4.4 DEREAD - Read from a device

CALLING SEQUENCE:

dirstatus deread(dev, argp, &rval)

INPUT:

unsigned32 dev; /* 32-bit device number

unsigned8 *argp; /* address of a driver */
/* specific parameter block */

OUTPUT:

unsigned32 *rval; /* return value from driver */

DIRECTIVE STATUS CODES:
SUCCESSFUL device successfully read
ECALLED called from within an ISR
ENUMBER invalid major device number

DESCRIPTION:

This directive calls the device driver read routine specified in the Device Driver
Table for this major number. Read operations typically require a buffer address
as part of the argument parameter block. The contents of this buffer will be
replaced with data from the device.

NOTES:

This directive may or may not cause the calling task to be preempted. This is
dependent on the device driver being invoked.

142

14.4.5 DE.WRITE - Write to a device

CALLING SEQUENCE:

dir status de.write(dev, argp, &rval)

INPUT:

unsigned32 dev; /* 32-bit device number */
unsigned8 *argp; /* address of a driver */

/* specific parameter block */

OUTPUT:

unsigned32 *rval; /* return value from driver */

DIRECTIVE STATUS CODES:

SUCCESSFUL device successfully written to
E_CALLED called from within an ISR
ENUMBER invalid major device number

DESCRIPTION:

This directive calls the device driver write routine specified in the Device Driver
Table for this major number. Write operations typically require a buffer address
as part of the argument parameter block. The contents of this buffer will be
sent to the device.

NOTES:

This directive may or may not cause the calling task to be preempted. This is
dependent on the device driver being invoked.

143

14.4.6 DECNTRL - Special device services

CALLING SEQUENCE:
dirstatus decntrl(dev, argp, &rval)

INPUT:

unsigned32 dev; /* 32-bit device number */
unsigned8 *argp; /* address of a driver */

/* specific parameter block */

OUTPUT:

unsigned32 *rval; /* return value from driver */

DIRECTIVE STATUS CODES:
SUCCESSFUL control function was successful
ECALLED called from within an ISR
E_NUMBER invalid major device number

DESCRIPTION:

This directive calls the device driver 1/0 control routine specified in the Device
Driver Table for this major number. The exact functionality of the driver entry
called by this directive is driver dependent. It should not be assumed that the
control entries of two device drivers are compatible. For example, an RS-232
driver I/O control operation may change the baud rate of a serial line, while an
I/O control operation for a floppy disk driver may cause a seek operation.

NOTES:

This directive may or may not cause the calling task to be preempted. This is
dependent on the device driver being invoked.

144

'5

Fatal Error Manager

15.1 Introduction

The fatal error manager processes all fatal or irrecoverable errors. The
directive provided by the fatal error manager is:

Name Directive Description

k-fatal Invoke the fatal error handler

15.2 Background

The fatal error manager is called upon detection of an irrecoverable error
condition by either RTEMS or the application software. Fatal errors can be
detected from three sources:

* the executive (RTEMS)

* user system code

* user application code

RTEMS automatically invokes the fatal error manager upon detection of an
error it considers to be fatal. Similarly, the user should invoke the fatal error
manager upon detection of a fatal error.

A user-supplied fatal error handler can be specified in the User Extension Table
to provide access to debuggers and monitors which may be present on the target
hardware. If configured, the fatal error manager will invoke a user-supplied

145

fatal error handler. If no user handler is configured or if the user handler
returns control to the fatal error manager, then the RTEMS default fatal error
handler is invoked.

The default fatal error handler disables processor interrupts, pushes the error
code and program status register on the current stack, and halts execution on
the local node.

Error Code OX0

Status Registerj 0x4

Figure 15-1 Fatal Error Stack Frame

15.3 Operations
15.4 Announcing a Fatal Error

The kfatal directive is invoked when a fatal error is detected. This directive is
responsible for invoking an optional user-supplied fatal error handler and/or
the RTEMS fatal error handler. All fatal error handlers are passed an error
code to describe the error detected.

Occasionally, an application requires more sophisticated fatal error processing
such as passing control to a debugger. For these cases, a user- supplied fatal
error handler can be specified in the RTEMS configuration table. The User
Extension Table parameter fatal contains the address of the fatal error handler
to be executed when the k-fatal directive is called. If the parameter is set to
NULL_.EXTENSION or if the configured fatal error handler returns to the
executive, then the default handler provided by RTEMS is executed. This
default handler will halt execution on the processor where the error occurred.

15.5 Directives

This section details the fatal error manager's directives. A subsection is
dedicated to each of this manager's directives and describes the calling sequence,
related constants, usage, and status codes.

146

15.5.1 KFATAL - Invoke the fatal error handler

CALLING SEQUENCE:
void kfatal(errcode

INPUT:
unsigned32 errcode; /* fatal error code */

OUTPUT: NONE

DIRECTIVE STATUS CODES NONE

DESCRIPTION:

This directive processes fatal errors. If the FATAL error extension is defined
in the configuration table, then the user-defined error extension is called. If
configured and the provided FATAL extension returns, then the RTEMS fault
error handler is invoked. The RTEMS fatal error handler pushes the error code
and program status register on the current stack, disables interrupts, and halts
the processor. This directive can be invoked by RTEMS or by the user's
application code including initialization tasks, other tasks, and ISRs.

NOTES:

This directive supports local operations only.

Unless the user-defined error extension takes special actions such as restarting
the calling task, this directive WILL NOT RETURN to the caller.

The user-defined extension for this directive may wish to initiate a global
shutdown.

147/(148 blank)

16

- Scheduling Concepts

16.1 Introduction

The concept of scheduling in real-time systems dictates the ability to provide
immediate response to specific external events, particularly the necessity of
scheduling particular tasks to run within a specified time limit after the
occurrence of an event. For example, software embedded in life-support systems
used to monitor hospital patients must take instant action if a change in the
patient's status is detected.

The component of RTEMS responsible for providing this capability is
appropriately called the scheduler. The scheduler's sole purpose is to allocate
the all important resource of processor time to the various tasks competing for
attention. The RTEMS scheduler allocates the processor using a priority-based,
preemptive algorithm augmented to provide round-robin characteristics within
individual priority groups. The goal of this algorithm is to guarantee that the
task which is executing on the processor at any point in time is the one with the
highest priority among all tasks in the ready state.

There are two common methods of accomplishing the mechanics of this
algorithm. Both ways involve a list or chain of tasks in the ready state. One
method is to randomly place tasks in the ready chain forcing the scheduler to
scan the entire chain to determine which task receives the processor. The other
method is to schedule the task by placing it in the proper place on the ready
chain based on the designated scheduling criteria at the time it enters the ready
state. Thus, when the processor is free, the first task on the ready chain is
allocated the processor. RTEMS schedules tasks using the second method to
guarantee faster response times to external events.

149

16.2 Scheduling Mechanisms

RTEMS provides four mechanisms which allow the user to impact the task
scheduling process:

" user-selectable task priority level

" task preemption control

" task timeslicing control

" manual round-robin selection

Each of these methods provides a powerful capability to customize sets of tasks
to satisfy the unique and particular requirements encountered in custom
real-time applications. Although each mechanism operates independently,
there is a precedence relationship which governs the effects of scheduling
modifications. The evaluation order for scheduling characteristics is always
priority, preemption mode, and timeslicing. When reading the descriptions of
timeslicing and manual round-robin it is important to keep in mind that
preemption (if enabled) of a task by higher priority tasks will occur as requirea,
overriding the other factors presented in the description.

16.2.1 Task Priority

The most significant of these mechanisms is the ability for the user to assign a
priority level to each individual task when it is created and to alter a task's
priority at run-time. RTEMS provides 255 priority levels. Level 255 is the
lowest priority and level 1 is the highest. When a task is added to the ready
chain, it is placed behind all other tasks of the same priority. This rule provides
a round-robin within priority group scheduling characteristic. This means that
in a group of equal priority tasks, tasks will execute in the order they become
ready or FIFO order. Even though there are ways to manipulate and adjust task
priorities, the most important rule to remember is:

The RTEMS scheduler will always select the highest priority
task that is ready to run when allocating the processor to a
task.

16.2.2 Preemption

Another way the user can alter the basic scheduling algorithm is by
manipulating the preemption bit in the mode parameter of individual tasks. If

150

preemption is disabled for a task, then the task will not relinquish control of the
processor until it terminates, blocks, or re-enables preemption. Even tasks
which become ready to run and possess higher priority levels will not be allowed
to execute. Note that the preemption setting has no effect on the manner in
which a task is scheduled. It only applies once a task has control of the processor.

16.2.3 Timeslicing

Timeslicing or round-robin scheduling is an additional method which can be
used to alter the basic scheduling algorithm. Like preemption, timeslicing is
specified on a task by task basis. If timeslicing is enabled for a task, RTEMS
will limit the amount of time the task can execute before the processor is
allocated to another task. Each tick of the real-time clock reduces the currently
running task's timeslice. When the execution time equals the timeslice,
RTEMS will dispatch another task of the same priority to execute. If there are
no other tasks of the same priority ready to execute, then the current task is
allocated an additional timeslice and continues to run. Remember that a higher
priority task will preempt the task (unless preemption is disabled) as soon as it
is ready to run, even if the task has not used up its entire timeslice.

16.2.4 Manual Round-Robin

The final mechanism for altering the RTEMS scheduling algorithm is called
manual round-robin. Manual round-robin is invoked by using the tm-wkafter
directive with a time interval of YIELD. This allows a task to give up the
processor and be immediately returned to the ready chain at the end of its
priority group. If no other tasks of the same priority are ready to run, then the
task does not lose control of the processor.

16.2.5 Dispatching Tasks

The dispatcher is the RTEMS component responsible for allocating the
processor to a ready task. In order to allocate the processor to one task, it must
be deallocated or retrieved from the task currently using it. This involves a
concept called a context switch. To perform a context switch, the dispatcher
saves the context of the current task and restores the context of the task which
has been allocated to the processor. Saving and restoring a task's context is the
storing/loading of all the essential information about a task to enable it to
continue execution without any effects of the interruption. For example, a
task's register contents must be the same when it is given the processor as they
were when it was taken away. All of the information that must be saved or
restored for a context switch is located either in the TCB or on the task's stacks.

151

Tasks that utilize a numeric coprocessor and are created with the FP attribute
require additional operations during a context switch. These additional
operations are necessary to save and restore the floating point context of FP
tasks. To avoid unnecessary save and restore operations, the state of the
numeric coprocessor is only saved when an FP task is dispatched and that task
was not the last task to utilize the coprocessor.

16.3 Task State Transitions

Tasks in an RTEMS system must always be in one of the five allowable task
states. These states are: executing, ready, blocked, dormant, and non-existent.

A task occupies the non-existent state before a t create has been issued on its
behalf. A task enters the non-existent state from any other state in the system
when it is deleted with the tjdelete directive. While a task occupies this state
it does not have a TCB or a task ID assigned to it; therefore, no other tasks in
the system may reference this task.

When a task is created via the t-create directive it enters the dormant state.
This state is not entered through any other means. Although the task exists in
the system, it cannot actively compete for system resources. It will remain in
the dormant state until it is started via the tstart directive, at which time it

Non-existenm

Creating
DNetfng

Dormant
Dltn

Starting

Dltng neiln

Figure 16-1 RTEMS State Transitions

152

enters the ready state. The task is now permitted to be scheduled for the
processor and to compete for other system resources.

A task occupies the blocked state whenever it is unable to be scheduled to run.
A running task may block itself or be blocked by other tasks in the system. The
running task blocks itself through voluntary operations that cause the task to
wait. The only way a task can block a task other than itself is with the t-suspend
directive. A task enters the blocked state due to any of the following conditions:

* A task issues a tsuspend directive which blocks either itself or
another task in the system.

* The running task issues a q yeceive directive with the wait
option and the message queue is empty.

" The running task issues an ev receive directive with the wait
option and the currently pending events do not satisfy the
request.

" The running task issues a sm-p directive with the wait option
and the requested semaphore is unavailable.

" The running task issues a tm wkafter directive which blocks
the task for the given time interval. If the time interval
specified is zero, the task yields the processor and remains in
the ready state.

* The running task issues a tm-wkwhen directive which blocks
the task until the requested date and time arrives.

* The running task issues a rn-getseg directive with the wait
option and there is not an available segment large enough to
satisfy the task's request.

A blocked task may also be suspended. Therefore, both the suspension and the
condition that caused the task to block, must be lifted before the task becomes
ready to run.

A task occupies the ready state when it is able to be scheduled to run, but
currently does not have control of the processor. Tasks of the same or higher
priority will yield the processor by either becoming blocked, completing their
timeslice, or being deleted. All tasks with the same priority will execute in FIFO
order. A task enters the ready state due to any of the following conditions:

* A running task issues a t-resume directive for a task that is
suspended and the task is not blocked waiting on any resource.

153

" A running task issues a q.send, q-broadcast, or a qjurgent
directive which posts a message to the queue on which the
blocked task is waiting.

* A runningtask issues an ev send directive which sends an event
condition to a task which is blocked waiting on that event
condition.

* A running task issues a sm-y directive which releases the
semaphore on which the blocked task is waiting.

* A running task issues a rn-retseg directive which releases a
segment to the region on which the blocked task is waiting and
a resultingsegment is large enough to satisfy the task's request.

" A timeout interval expires for a task which was blocked by a
call to the tm-wkafter directive.

* A timeout period expires for a task which blocked by a call to
the tmwkwhen directive.

" A timeout interval expires for a task which was blocked waiting
on a message, event, semaphore, or segment with a timeout
specified.

" A running task issues a directive which deletes a message
queue, a semaphore, or a region on which the blocked task is
waiting.

* A running task i,,uc , t restart directive for the blocked task.

* The running task, with its preemption mode enabled, may be
made ready by issuing any of the directives that may unblock
a task with a higherpriority. This directive maybe issued from
the running task itself or from an ISR

A ready task occupies the executing state when it has control of the CPU. A
task enters the executing state due to any of the following conditions:

" The task is the highest priority ready task in the system.

" The running taSk blocks and the task is next in the scheduling
queue. The task may be of equal priority as in round-robin
scheduling or the task may possess the highest priority of the
remaining ready tasks.

154

* The running task mayreenable its preemption mode and a task
exists in the ready queue that has a higher priority than the
running task.

* The running task lowers its own priority and another task is of

higher priority as a result.

* The running task raises the priority of a task above its own and
the running task is in preemption mode.

155/(156 blank)

17

Board
Support Packages

17.1 Introduction

A board support package (BSP) is a collection of user-provided facilities which
interface RTEMS with a specific hardware platform. These facilities typically
include hardware initialization, Input/Outpit device drivers, and hardware
clock management.

17.2 System Reset and Initialization

An RTEMS based application is initiated or re-initiated when the i80386
processor is reset. When the i80386 is reset, the processor performs the
following actions:

* The FAX registeris set to indicate the results of the processor's
power-up self test. If the self-test was not executed, the
contents of this register are undefined. Otherwise, a non-zero
value indicates the processor is faulty anda zero value indicates
a successful self-test.

* The DX register holds a component identifier and revision
level. DH contains 3 to indicate an i80386 component and DL
contains a unique revision level indicator.

* Control register zero (CRO) is set such that the processor is in
real mode with paging disabled. Other portions of CR0 are
used to indicate the presence of a numeric coprocessor.

157

" All bits in the extended flags register (EFLAG) which are not
permanently set are cleared. This inhibits all maskable inter-
rupts.

" The Interrupt Descriptor Register (IDTR) is set to point at

address zero.

" All segment registers are set to zero.

* The instruction pointer is set to OxOOOOFFFO. The first in-
struction executed after a reset is actually at OxFFFFFFFO
because the i80386 asserts the upper twelve address until the
first intersegment (FAR) JMP or CALL instruction. When a
JMP or CALL is executed, the upper twelve address lines are
lowered and the processor begins executing in the first mega-
byte of memory.

Typically, an intersegment JMP to the application's initialization code is placed
at address OxFFFFFFFO.Normally, the application's initialization is performed
at two separate times: before the call to init exec (reset application
initialization) and after init exec in the user's initialization tasks (local and
global application initialization). The order of the startup procedure is as
follows:

1. Reset application initialization.

2. Call to init-exec

3. Local and global application initialization.

The reset application initialization code is executed first when the i80386 is
reset. Some of the hardware components may be initialized in this code as well
as any application initialization that does not involve calls to RTEMS directives.
This initialization code is responsible for initializing all data structures required
by the i80386 in protected mode and for actually entering protected mode.

If the -.:plication requires that the IDTR be some value besides zero, then it
should., t it to the required value at this point. All tasks share the same i80386
IDTR value. Because interrupts are enabled automatically by RTEMS as part
of the init-exec directive, the IDTR MUST be set properly before this directive
is invoked to insure correct interrupt vectoring. If processor caching is to be
utilized, then it should be enabled during the reset application initialization
code. The reset code which is executed before the call to init-exec has the
following requirements:

158

" Must not make any RTEMS directive calls.

* Must set the stack segment and pointer (SS:ESP) such that a
minimum stack size of 256 bytes is provided for the initexec
directive.

* Must leave interrupts disabled.

" Must zero out the executive RAM work space.

" Must initialize the RTEMS entry trap vector.

* Must initialize the Interrupt Descriptor Table.

The init exec directive does not return to the initialization code, but causes the
highest priority initialization task to begin execution. Initialization tasks are
used to perform both local and global application initialization which is
dependent on RTEMS facilities. The user initialization task facility is typically
used to create the application's set of tasks.

17.2.1 SEGMENT USAGE

RTEMS is designed to operate in the thirty-two bit flat memory model of the
i80386 with paging disabled. In this mode, the i80386 automatically converts
every address from a logical to a physical address each time it is used. The i80386
uses information provided in the segment registers and the Global Descriptor
Table to accomplish this. RTEMS assumes the existence of following segments:

* a single code segment atprotection level zero (0) which contains
all application and executive code.

" a single data segment atprotection level zero (0) which contains
all application and executive data.

The i80386 must be placed in protected mode and the segment registers and
associated selectors must be initialized before the init exec directive is invoked.
When each task is started or restarted, it will start with the segment selectors
in use at initialization.

RTEMS does not require that logical and physical addresses are the same,
although it is desirable in many applications to do so. If logical and physical
addresses are different, the application may require an additional selector to
access physical addresses.

Unless specified otherwise, RTEMS assumes that the DS and ES registers
contain the selector for the single data segment when a directive is invoked.

159

This assumption is especially important when developing interrupt service

routines.

17.2.2 Allowing for Interrupt Stack Usage

The i80386 does not provide for a separate stack which is used exclusively by
interrupt handlers. Instead, ISRs use the stack of the task which they interrupt.
Since ISRs may occur at any time, each task's stack size must take into account
the worst case stack usage by any combination of nested ISRs. The following
stack requirements must be accounted for:

" Task's stack usage includingRTEMS system calls

" Processor's interrupt stack frame

* RTEMS system calls requiring up to 256 bytes

" Registers saved on stack

" Application subroutine calls

160

18

User Extensions

18.1 Introduction

RTEMS allows the application developer to augment selected features by
invoking user-supplied extension routines when the following system events
occur:

* Task creation e Task context switch

* Task initiation e Task exits

" Task reinitiation 9 Fatal error detection

" Task deletion

These extensions are invoked as C functions with arguments that are
appropriate to the system event. These functions are defined in the
application's User Extension Table which is included as part of the
Configuration Table. All user extensions are optional and RTEMS places no
naming restrictions on the user.

In addition, RTEMS provides for a user-defined data area to be linked to each
task's control block. This data area is an extension of the TCB and can be used
to store additional data required by one or more of the user's extension
functions. It is also possible for a user extension to utilize the notepad locations
associated with each task.

The sections that follow will contain a description of each extension. Each
section will contain an example of the C calling sequence for the corresponding
extension. The names given for the C function and its arguments are all defined
by the user. The names used in the examples were arbitrarily chosen and
impose no naming conventions on the user.

161

18.2 TCREATE Extension

The TCREATE extension directly corresponds to the t-create directive. If this
extension is defined in the Configuration Table and a task is being created, then
the extension routine will automatically be invoked by RTEMS. The extension
should be prototyped as follows:

void tcreate(curtcb, newtcb
t_cb *curtcb;
t_cb *newtcb;

where curtcb is the pointer to the TCB for the currently executing task, and
newtcb is the pointer to the TCB for the new task being created. This extension
is invoked from the t-create directive after newtcb has been completely
initialized, but before it is placed on a ready TCB chain.

18.3 TSTART Extension

The TSTART extension directly corresponds to the t-start directive. If this
extension is defined in the Configuration Table and a task is being started, then
the extension routine will automatically be invoked by RTEMS. The extension
should be prototyped as follows:

void tstart(curtcb, sttcb
t_cb *curtcb;
t_cb *sttcb;

where curtcb is the pointer to the TCB for the currently executing task, and
sttcb is the pointer to the TCB for the dormant task being started. This
extension is invoked from the t start directive after sttcb has been made ready
to start execution, but before it is placed on a ready TCB chain.

18.4 TRESTART Extension

The TRESTART extension directly corresponds to the trestart directive. If
this extension is defined in the Configuration Table and a task is being
restarted, then the extension should be prototyped as follows:

void trestart(curtcb, sttcb
t_cb *curtcb;
t_cb *sttcb;

where curtcb is the pointer to the TCB for the currently executing task, and
sttcb is the pointer to the TCB for the task being restarted. This extension is
invoked from the t-restart directive after sttcb has been made ready to start
execution, but before it is placed on a ready TCB chain.

162

18.5 TDELETE Extension

The TDELETE extension is associated with the tdelete directive. If this
extension is defined in the Configuration Table and a task is being deleted, then
the extension routine will automatically be invoked by RTEMS. The extension
should be prototyped as follows:

void tdelete(curtcb, deltcb
t_cb *curtcb;
t_cb *deltcb;

where curtcb is the pointer to the TCB for the currently executing task, and
deltcb is the pointer to the TCB for the task being deleted. This extension is
invoked from the tjdelete directive after the TCB has been removed from a
ready TCB chain, but before all its resources including the TCB have been
returned to their respective free pools. This extension should not call any
RTEMS directives if a task is deleting itself (curtcb is equal to deltcb).

18.6 TSWITCH Extension

The TSWITCH extension corresponds to a task context switch. If this extension
is defined in the Configuration Table and a task context switch is in progress,
thep the extension routine will automatically be invoked by RTEMS. The
extension should be prototyped as follows:

void tswitch(curtcb, heirtcb
t_cb *curtcb;
t_cb *heirtcb;

where curtcb is the pointer to the TCB for the task that is being swapped out,
and heirtcb is the pointer to the TCB for the task being swapped in. This
extension is invoked from RTEMS' dispatcher routine after the curtcb context
has been saved, but before the heirtcb context has been restored. This
extension should not call any RTEMS directives.

18.7 TASKEXITTED Error Extension

The TASKEXITTED error extension is invoked when a task exits by either an
implicit or explicit return statement. The address of this extension is
automatically placed on each task's stack along with its argument list at task
creation time. This user extension is prototyped as follows:

void task..xitted()

This extension is invoked with no arguments and should not be invoked directly.
Although exiting of task is typically considered to be a fatal error, this extension

163

allows recovery by either restarting or deleting the exiting task. If the user does
not wish to recover, then a fatal error may be reported.

If user-provided TASKEXITTED error extension is not provided, then the
RTEMS default handler will be used.

18.8 FATAL Error Extension

The FATAL error extension is associated with the kfatal directive. If this
extension is defined in the Configuration Table and the k.fatal directive has
been invoked, then this extension will be called. This extension should be
prototyped as follows:

void kfatal(errcode
unsigned32 errcode;

where errcode is the error code passed to the k-fatal directive. This extension
is invoked from the kfatal directive.

If defined, the user's FATAL error extension is invoked before RTEMS' default
fatal error routine is invoked and the processor is stopped. For example, this
extension could be used to pass control to a debugger when a fatal error occurs.
This extension should not call any RTEMS directives.

18.9 TCB Extension

The TCB extension is a pointer field in the TCB which can be set by the user
to access an area of RAM. This allows an application to augment the TCB with
user-defined information. For example, an application could implement task
profiling by storing timing statistics in the TCB's extended memory area. When
a task context switch is being executed, the TSWITCH extension could read a
real-time clock to calculate how long the task being swapped out has run as well
as timestamp the starting time for the task being swapped in.

If used, the extended memory area for the TCB should be allocated and the TCB
extension pointer should be set at the time the task is created or started by
either the TCREATE or TSTART extension. The application is responsible for
managing this extended memory area for the TCBs. The memory may be
reinitialized by the TRESTART extension and should be deallocated by the
TDELETE extension when the task is deleted. Since the TCB extension buffers
would most likely be of a fixed size, the RTEMS partition manager could be used
to manage the application's extended memory area. The application could
create a partition of fixed size TCB extension buffers and use the partition
manager's allocation and deallocation directives to obtain and release the
extension buffers.

164

19

Configuring a System

19.1 Configuration Table

The RTEMS Configuration Table is used to tailor an application for its specific
needs. For example, the user can configure the maximum number of tasks for
this application. The address of the user-defined Configuration Table is passed
as an argument to the init exec directive, which MUST be the first RTEMS
directive called. The RTEMS Configuration Table is defined in a C structure.
Each entry in the table is either two or four bytes in length. The structure is
given here:

struct config-info {
unsigned32 execram; /* RTEMS RAM Work Area */
unsigned32 ramsize; /* RTEMS Work Area size */
unsignedl6 maxtasks; /* max number tasks
unsignedl6 max semaphores; /* max number semaphores */
unsignedl6 maxtimers; /* max number timers */
unsignedl6 max-queues; /* max number queues
unsignedl6 max-messages; /* max number messages */
unsignedl6 maxregions; /* max number regions */
unsignedl6 maxpartitions; /* max number partitions */
unsignedl6 max dpmems; /* max dp memory areas */
unsignedl6 mstick; /* ms in a tick
unsignedl6 tslice; /* ticks in a timeslice */
unsigned32 numjitasks; /* number of init tasks */
itasktable *Itaskstbl; /* init task table
unsigned32 numdevices; /* number device drivers */
drivertable *Drv-tbl; /* driver table */
exttable *Exttbl; /* extension table */
mp-table *Mp-tbl; /* MP config table

exec-ram is the starting address of the RTEMS RAM Workspace.
This area contains items such as the various object control
blocks (TCBs, QCBs, ...) and task stacks. If the address is

165

not aligned on a four-word boundary, then RTEMS will
invoke the fatal error handler during init-exec.

ram-size is the calculated size of the RTEMS RAM Workspace. The
section Sizing the RTEMS RAM Workspace details how to
arrive at this number.

max-tasks is the maximum number of tasks that can be concurrently
active (created) in the system including initialization tasks.

maxsemaphores is the maximum number of semaphores that can be
concurrently active in the system.

max-timers is the maximum number of timers that can be concurrently
active in the system.

max-queues is the maximum number of message queues that can be
concurrently active in the system.

max-messages is the maximum number of messages that can be allocated
to the application.

max-regions is the maximum number of regions that can be concurrently
active in the system.

maxpartitions is the maximum number of partitions that can be
concurrently active in the system.

max-dpmems is the maximum number of dual-port memory areas that can

be concurrently active in the system.

mstick is number of milliseconds per clock tick.

tslice is the number of clock ticks for a timeslice.

num-itasks is the number of initialization tasks configured. At least one
initialization task must be configured.

Itasks-tbl is the address of the Initialization Task Table. This table
contains the information needed to create and start each of
the initialization tasks. The format of this table will be
discussed below.

num devices is the number of device drivers for the system. There
should be the same number of entries in the Device Driver

166

Table. If this field is zero, then the Drv-tbl entry should
be NULLDRIVER TABLE.

Drv tbl is the address of the Device Driver Table. This table
contains the entry points for each device driver. If the
num devices field is zero, then this entry shAould be
NULL DRIVER TABLE. The format of this table will be
discussed below.

Ext tbl is the address of the User Extension Table. This table
contains the entry points for each user extension. If no user
extensions are configured, then this entry should be
NULLEXTTABLE. The format of this table will be
discussed below.

Mptbl is the address of the Multiprocessor Configuration Table.
This table contains information needed by RTEMS only
when used in a multiprocessor configuration. This field
must be NULLMP.TABLE when RTEMS is used in a single
processor configuration.

19.2 Initialization Task Table

The Initialization Task Table is used to describe each of the user initialization
tasks to the Initialization Manager. The table contains one entry for each
initialization task the user wishes to create and start. The fields of the structure
directly correspond to arguments to the t-create and tstart directives. The
number of entries is found in the num itasks entry in the Configuration Table.
The format of each entry in the Initialization Task Table is defined in a C
structure, and is given below:

struct itasksinfo {
obj-name name; /* task name
unsigned32 stksize; /* task stack size */
task-pri priority; /* task priority */
unsigned32 attributes; /* task attributes */
task-ptr entry; /* task entry point */
unsigned32 mode; /* task initial mode */
unsigned32 arg; /* task argument */

name is the name of this initialization task.

stksize is the size of the stack for this initialization task.

priority is the priority of this initialization task.

167

attributes is the attribute set used during creation of this initialization

task.

entry is the address of the entry point of this initialization task.

mode is the initial execution mode of this initialization task.

arg is the initial argument for this initialization task.

A typical declaration for an Initialization Task Table might appear as follows:

itask_table Inittasks[2] = {
{ INITI_NAME, 1024, 1, 0,

initl, INTR(0)INOPREEMPT, Initlarg },
{ INIT2_NAME, 1024, 1024, 1, 0,

init2, INTR(0)INOPREEMPT, Init2_arg }

19.3 Driver Address Table

The Device Driver Table is used to inform the I/O Manager of the set of entry
points for each device driver configured in the system. The table contains one
entry for each devioe driver required by the application. The number of entries
is defined in the num devices entry in the Configuration Table. The format of
each entry in the Device Driver Table is defined in a C structure, and is given
below:

struct driver-info {
proc-ptr init; /* initialization procedure */
procptr open; /* open request procedure */
proc-ptr close; /* close request procedure */
proc-ptr re-d; /* read request procedure */
proc-ptr write; /* write request procedure */
proc-ptr cntrl; /* special request procedure */
unsigned32 reservedl; /* reserved for RTEMS use */
unsigned32 reserved2; /* reserved for RTEMS use */

1;

init is the address of the entry point called by de init to initialize

a device driver and its associated devices.

open is the address of the entry point called by de-open.

close is the address of the entry point called by de-close.

read is the address of the entry point called by deread.

write is the address of the entry point called by de-write.

168

cntrl is the address of the entry point called by de-cntrl.

reservedl is reserved for RTEMS use and should be set to
RESERVED.

reserved2 is reserved for RTEMS use and should be set to
RESERVED.

Driver entry points configured as NULL-DRIVER will always return a status

code of SUCCESSFUL. No user code will be executed in this situation.

A typical declaration for a Device Driver Table might appear as follows:

drivertable Driver_table[2] = {
{ tty-open,tty-open,tty-close,tty-read,
tty_write,tty-cntrl,RESERVED,RESERVED },

{ ip_open,lpopen,lpclose, NULLDRIVER
lp-write, lp-cntrl,RESERVED, RESERVED }

1;

More information regarding the construction and operation of device drivers is
provided in the I/O Manager chapter.

19.4 User Extensions Table

The User Extensions Table is used to inform RTEMS of each of the optional
user-supplied extensions. This table contains one entry for each possible
extension. The entries are called at critical times in the life of a task. The
format of each entry in the User Extensions Table is defined in a C structure,
and is given below:

struct ext-info {
proc-ptr tcreate; /* tcreate user extension */
proc-ptr tstart; /* tstart user extension */
proc-ptr trestart; /* trestart user extension */
proc-ptr tdelete; /* tdelete user extension */
proc-ptr tswitch; /* tswitch user extension */
procptr taskexitted; /* task exit handler */
proc-ptr fatal; /* fatal error handler */

tcreate is the address of the user-supplied subroutine for the
TCREATE extension. If this extension for task creation is
defined, it is called from the t create directive. A value of
NULL-EXTENSION indicates that no extension is
provided.

169

tstart is the address of the user-supplied subroutine for the
TSTART extension. If this extension for task initiation is
defined, it is called from the t-start directive. A value of
NULL-EXTENSION indicates that no extension is
provided.

trestart is the address of the user-supplied subroutine for the
TRESTART extension. If this extension for task
re-initiation is defined, it is called from the trestart
directive. A value of NULL-EXTENSION indicates that no
extension is provided.

tdelete is the address of the user-supplied subroutine for the
TDELETE extension. If this RTEMS extension for task
deletion is defined, it is called from the t delete directive. A
value of NULL-EXTENSION indicates that no extension is
provided.

tswitch is the address of the user-supplied subroutine for the task
context switch extension. This subroutine is called from
RTEMS' dispatcher after the current task has been
swapped out but before the new task has been swapped in.
A value of NULL-EXTENSION indicates that no extension
is provided. As this routine is invoked after saving the
current task's context and before restoring the heir task's
context, it is not necessary for this routine to save and
restore any registers.

taskexitted is the address of the user-supplied subroutine which is
invoked when a task exits. This procedure is responsible for
some action which will allow the system to continue
execution (i.e. delete or restart the task) or to terminate
with a fatal error. If this field is set to
NULL EXTENSION, the default RTEMS taskexitted
handler will be invoked.

fatal is the address of the user-supplied subroutine for the
FATAL extension. This RTEMS extension of fatal error
handling is called from the k fatal directive. L" the user's
fatal error handler returns or if this entry is
NULL EXTENSION then the default RTEMS fatal error
handler will be executed.

A typical declaration for a User Extension Table which defines the TCREATE,
TDELETE, TSWITCH, and FATAL extension might appear as follows:

170

exttable Userextensions {
tcreate-ext, NULLEXTENSION, NULLEXTENSION,
tdeleteext, tswitchext,
NULLEXTENSION, fatalext

More information regarding the user extensions is provided in the User

Extensions chapter.

19.5 Multiprocessor Configuration Table

The Multiprocessor Configuration Table contains information needed when
using RTEMS in a multiprocessor configuration. Many of the details associated
with configuring a multiprocessor system are dependent on the multiprocessor
communications layer provided by the user. The address of the Multiprocessor
Configuration Table should be placed in the Mptbl entry in the primary
Configuration Table. Further details regarding many of the entries in the
Multiprocessor Configuration Table will be provided in the Multiprocessing
chapter. The format of the Multiprocessor Configuration Table is defined in
a C structure, and is given below:

struct mp-info {
unsignedl6 node; /* local node number
unsignedl6 maxnodes; /* number nodes in system */
unsigned32 maxgobjects; /* max global objects *1
unsigned32 max-proxies; /* max proxies */
mpci-table *Mpci-tbl; /* MPCI table

node is a unique processor identifier and is used in routing
messages between nodes in a multiprocessor configuration.
Each processor must have a unique node number. RTEMS
assumes that node numbers start at one and increase
sequentially. This assumption can be used to advantage by
the user-supplied MPCI layer. Typically, this requirement
is made when the node numbers are used to calculate the
address of inter-processor communication links. Zero
should be avoided as a node number because some MPCI
layers use node zero to represent broadcasted packets.
Thus, it is recommended that node numbers start at one
and increase sequentially.

max-nodes is the number of processor nodes in the system.

max gobjects is the maximum number of global objects which can exist at
any given moment in the entire system. If this parameter
is not the same on all nodes in the system, then a fatal error

171

is generated to inform the user that the system is
inconsistent.

maxproxies is the maximum number of proxies which can exist at any
given moment on this particular node. A proxy is a
substitute task control block which represent a task residing
on a remote node when that task blocks on a remote object.
Proxies are used in situations in which delayed interaction
is required with a remote node.

Mpcitbl is the address of the Multiprocessor Communications
Interface Table. This table contains the entry points of
user-provided functions which constitute the
multiprocessor communications layer. This table must be
provided in multiprocessor configurations with all entries
configured. The format of this table and details regarding
its entries can be found in the next section.

19.6 Multiprocessor Communications Interface Table

The format of this table is defined in a C structure, and is given below:

struct mpci-info {
proc_ptr init; /* initialization procedure */
proc_ptr getpkt; /* get packet procedure
proc_ptr retpkt; /* return packet procedure *1
proc_ptr send; /* packet send procedure */
proc_ptr receive; /* packet receive procedure */

1;

init is the address of the entry point for the initialization
procedure of the user supplied multiprocessor
communications layer.

getpkt is the address of the entry point for the procedure called by
RTEMS to obtain a packet from the user supplied
multiprocessor communications layer.

retpkt is the address of the entry point for the procedure called by
RTEMS to return a packet to the user supplied
multiprocessor communications layer.

send is the address of the entry point for the procedure called by
RTEMS to send an envelope to another node. This
procedure is part of the user supplied multiprocessor
communications layer.

172

receive is the address of the entry point for the procedure called by
RTEMS to retrieve an envelope containing a message from
another node. This procedure is part of the user supplied
multiprocessor communications layer.

More information regarding the required functionality of these entry points is
provided in the Multiprocessor chapter.

19.7 Determining Memory Requirements

Since memory is a critical resource in many real-time embedded systems,
RTEMS was specifically designed to allow unused managers to be excluded from
the run-time environment. This allows the application designer the flexibility
to tailor RTEMS to most efficiently meet system requirements while still
satisfying even the most stringent memory constraints. As result, the size of
the RTEMS executive is application dependent. Appendix A provides a
worksheet for calculating the memory requirements of a custom RTEMS
run-time environment. To insure that enough memory is allocated for future
versions of RTEMS, the application designer should round these memory
requirements up. The following managers may be optionally excluded:

* signal * partition

* region 0 time

* dual ported memory * semaphore

* 1/0 0 message

* fatal error 0 event

RTEMS based applications must somehow provide memory for RTEMS' code
and data space. Although RTEMS' data space must be in RAM, its code space
can be located in either ROM or RAM. In addition, the user must allocate RAM
for the RTEMS RAM Workspace. The size of this area is application dependent
and can be calculated using the formula also provided Appendix A.

All RTEMS data variables and routine names used by RTEMS begin with the
underscore (-) character. If RTEMS is linked with an application, then the
application code should NOT contain any symbols which begin with the
underscore character and an upper-case letter to avoid any naming conflicts. All
RTEMS directive names should be treated as reserved words.

173

19.7.1 Sizing the RTEMS RAM Workspace

The RTEMS RAM Workspace is a user-specified block of memory reserved for
use by RTEMS. The application should NOT modify this memory after it is
cleared by the board support package. This area consists primarily of the
RTEMS data structures whose exact size depends many values specified in the
Configuration Table. In addition, task stacks and floating point context areas
are dynamically allocated from the RTEMS RAM Workspace.

The starting address of the RTEMS RAM Workspace must be aligned on a
four-byte boundary. Failure to properly align the workspace area will result in
a fatal error condition.

A worksheet is provided in Appendix A to assist the user in calculating the
minimum size of the RTEMS RAM Workspace for this application. The value
calculated with this worksheet is the minimum value that should be specified
as the ram-size parameter of the Configuration Table. The user is cautioned
that future versions of RTEMS may not have the same memory requirements
per object. Although the value calculated is sufficient for all processors
supported by the current release of RTEMS, the user is advised to allocate
somewhat more memory than the worksheet recommends to insure
compatibility with future releases.

174

20

Multiprocessing Manager

20.1 Introduction

In multiprocessor real-time systems, new requirements, such as sharing data
and global resources between processors, are introduced. This requires an
efficient and reliable communications vehicle which allows all processors to
communicate with each other as necessary. In addition, the ramifications of
multiple processors affect each and every characteristic of a real-time system,
almost always making them more complicated.

RTEMS addresses these issues by providing simple and flexible real-time
multiprocessing capabilities. The executive easily lends itself to both
tightly-coupled and loosely-coupled configurations of the target system
hardware. In addition, RTEMS supports both homogeneous and heterogeneous
target environments.

A major design goal of the RTEMS executive was to transcend the physical
boundaries of the target hardware configuration. This goal is achieved by
presenting to the application software a logical view of the target system where
the boundaries between processor nodes are transparent. As a result, the
application developer may designate objects such as tasks, queues, events,
signals, semaphores, and memory blocks as global objects. These global objects
may then be accessed by any task regardless of which processors the object and
the accessing task may reside. RTEMS automatically determines that the
object being accessed resides on another processor and performs the actions
required to access the desired object. Simply stated, RTEMS allows the entire
system, both hardware and software, to be viewed logically as a single system.

175

20.2 Background

RTEMS makes no assumptions regarding the connection media or the topology
of a multiprocessor system. The tasks which compose a particular application
can be spread among several processors. The application tasks can interact
using a subset of the RTEMS directives as if they were on the same processor.
These directives allow application tasks to exchange data, communicate, and
synchronize regardless of which processor they reside upon.

The RTEMS multiprocessor execution model is multiple instruction streams
with multiple data streams (MIMD). This execution model has each of the
processors executing code independent of the other processors. Because of this
parallelism, the application designer can more easily guarantee deterministic
behavior.

By supporting heterogeneous environments, RTEMS allows the systems
designer to select the most efficient processor for each subsystem of the
application. Configuring RTEMS for a heterogeneous environment is no more
difficult than for a homogeneous one. In keeping with RTEMS philosophy of
providing transparent physical node boundaries, the minimal heterogeneous
processing required is isolated in the MPCI layer.

20.2.1 Nodes

A processor in a RTEMS system is referred to as a node. Each node is assigned
a unique non-zero node number by the application designer. RTEMS assumes
that node numbers are assigned consecutively from one to maxnodes. The node
number, node, and the maximum number of nodes, max-nodes, in a system are
found in the Multiprocessor Configuration Table. The max nodes field and
the number of global objects, num.gobjects, is required to be the same on all
nodes in a system.

The node number is used by RTEMS to identify each node when performing
remote operations. Thus, the Multiprocessor Communications Interface
Layer (MPCI) must be able to route messages based on the node number.

20.2.2 Global Objects

All RTEMS objects which are created with the GLOBAL option will be known
on all other nodes. Global objects can be referenced from any node in the system,
although certain directive specific restrictions (e.g. cannot delete a remote
object) may apply. A task does not have to be global to perform operations
involving remote objects. The distribution of tasks to processors is performed

176

during the application design phase. Dynamic task relocation is not supported

by RTEMS.

20.2.3 Global Object Table

Every node in a multiprocessor system maintains two tables containing object
information: a local object table and a global object table. The local object table
on each node is unique and contains information for both local and global objects
created on this node. The global object table contains information regarding all
global objects in the system and therefore, is the same on every node.

Since each node must maintain an identical copy of the global object table, the
maximum number of entries in each copy is determined by the num-gobjects
parameter in the Multiprocessor Configuration Table. This parameter, as well
as the max-nodes parameter, is required to be the same on all nodes. To
maintain consistency among the table copies, every node in the system must be
informed of the creation or deletion of a global object.

20.2.4 Remote Operations

When an application performs an operation on a remote global object, RTEMS
must generate a Remote Request (RQ) message and send it to the appropriate
node. After completing the requested operation, the remote node will build a
Remote Response (RR) message and send it to the originating node. Messages
generated as a side-effect of a directive (such as deleting a global task) are known
as Remote Processes (RP) and do not require the receiving node to respond.

Other than taking slightly longer to execute directives on remote objects, the
application is normally unaware of the location of the objects it acts upon. The
exact amount of overhead required for a remote operation is dependent on the
media connecting the nodes and, to a lesser degree, the efficiency of the
user-provided MPCI routines.

The following shows the typical transaction sequence during a remote
application:

(1) The application issues a directive acc ssing a Kiviutu glubal
object.

(2) RTEMS determines the node on which the object resides.

(3) RTEMS calls the user-provided MPCI routine GETPKT to
obtain a packet in which to build a RQ message.

177

(4) After building a message packet, RTEMS calls the user-
provided MPCI routine SEND to transmit the packet to the
node on which the object resides (referred to as the destination
node).

(5) The calling task is blocked until the RR message arrives, and
control of the processor is transferred to another task.

(6) The MPCI layer on the destination node senses the arrival of
a packet (commonly in an ISR), and calls the RTEMS
mp announce directive. This directive readies the
Multiprocessing Server.

(7) The Multiprocessing Server calls the user-provided MPCI
routine RECEIVE, performs the requested operation, builds
an RR message, and returns it to the originating node.

(8) The MPCI layer on the originating node senses the arrival of
a packet (typically via an interrupt), and calls the RTEMS
mp-announce directive. This directive readies the
Multiprocessing Server.

(9) The Multiprocessing Server calls the user-provided MPCI
routine RECEIVE, readies the original requesting task, and
blocks until another packet arrives. Control is transferred to
the original task which then completes processing the
directive.

If an uncorrectable error occurs in the user-provided MPCI layer, the fatal error
handler should be invoked. RTEMS assumes the reliable transmission and
reception of messages by the MPCI and makes no attempt to detect or correct
errors.

20.2.5 Proxies

A proxy is an RTEMS data structure which resides on a remote node and is used
to represent a task which must block as part of a remote operation. This action
can occur as part of the sm.p and q_receive directives. If the object were local,
thc task's control block would be available for modification to indicate it was
pending a message or semaphore. However, the task's control block resides only
on the same node as the task. In this case, the remote node must allocate a
proxy to represent the task until it can be readied.

178

The maximum number of proxies is defined in the Multiprocessor
Configuration Table. Each node in a multiprocessor system may require a
different number of proxies to be configured. Tle distribution of proxy control
blocks is application dependent and is difterent from the distribution of tasks.

20.2.6 Multiprocessor Configuration Table

The Multiprocessor Configuration Table contains information needed by
RTEMS when used in a multiprocessor system. This table is discussed in detail
in a section in the previous chapter, Multiprocessor Configuration Table.

20.3 Multiprocessor Communications Interface Layer

The Multiprocessor Communications Interface Layer (MPCI) is a set of
user-provided procedures which enable the nodes in a multiprocessor system to
communicate with one another. These routines are invoked by RTEMS at
various times in the generation and processing of remote requests. Interrupts
are enabled when an MPCI procedure is invoked. It is assumed that if the
execution mode and/or interrupt level are altered by the MPCI layer, that they
will be restored prior to returning to RTEMS.

The MPCI layer is responsible for managing a pool of buffers called packets and
for sending these packets between system nodes. Packet buffers contain the
messages sent between the nodes. Typically, the MPCI layer will encapsulate
the packet within an envelope which contains the information needed by the
MPCI layer. The number of packets available is dependent on the MPCI layer
implementation.

The entry points to the routines in the user's MPCI layer should be placed in
the Multiprocessor Communications Interface Table. The user must provide
entry points for each of the following table entries in a multiprocessor system:

init initialize the MPCI

getpkt obtain a packet buffer

retpkt return a packet buffer

send send a packet to another node

receive called to get an arrived packet

A packet is sent by RTEMS in each of the following situations:

179

" an RQ is generated on an originating node;

" an RR is generated on a destination node;

" a global object is created;

* a global object is deleted;

* a local task blocked on a remote object is deleted;

" during system initialization to check for system consistency.

The arrival of a packet at a node may generate an interrupt. If it does not, the
real-time clock ISR can check for the arrival of a packet. In any case, the
mp-announce directive must be called to announce the arrival of a packet. After
exiting the ISR, control will be passed to the Multiprocessing Server to process
the packet. The Multiprocessing Server will call the getpkt entry to obtain a
packet buffer and the receive entry to copy the message into the buffer obtained.

20.3.1 INIT

The INIT component of the user-provided MPCI layer is called as part of the
init exec directive to initialize the MPCI layer and associated hardware. It is
invoked immediately after all of the device drivers have been initialized. This
component should be prototyped as follows:

void init(conftbl)
config-table *conf-tbl;

where conf tbl is the address of the user's Configuration Table. Operations on
global objects cannot be performed until this component is invoked. The INIT
component is invoked only once in the life of any system. If the MPCI layer
cannot be successfully initialized, the fatal error manager should be invoked.

One of the primary functions of the MPCI layer is to provide the executive with
packet buffers. The INIT routine must create and initialize a pool of packet
buffers. There must be enough packet buffers so RTEMS can obtain one
whenever needed.

20.3.2 GETPKT

The GETPKT component of the user-provided MPCI layer is called when
RTEMS must obtain a packet buffer to send or broadcast a message. This
component should be prototyped as follows:

void getpkt(pkt
unsigned8 **pkt;

180

where pkt is the address of a pointer to a packet. This routine always succeeds
and, upon return, pkt will contai-7 the address of a packet. If for any reason, a
packet cannot be successfully obtained, then the fatal error manager should be
invoked.

RTEMS has been optimized to avoid the need for obtaining a packet each time
a message is sent or broadcast. For example, RTEMS sends response messages
(RR) back to the originator in the san.- packet in which the request message
(RQ) arrived.

20.3.3 RETPKT

The RETPKT component of the user-provided MPCI layer is called when
RTEMS needs to release a packet to the free packet buffer pool. This
component should be prototyped as follows:

void retpkt(pkt
unsigned8 *pkt;

where pkt is the address of a packet. If the packet cannot be successfully
returned, the fatal error manager should be invoked.

20.3.4 RECEIVE

The RECEIVE component of the user-provided MPCI layer is called when
RTEMS needs to obtain a packet which has previously arrived. This component
should be prototyped as follows:

void receive(pkt

unsigned8 **pkt;

where pkt is a pointer to the address of a packet to place the message from
another node. If a message is available, then pkt will contain the address of the
message from another node. If no messages are available, this entry pkt should
contain NULL-PACKET.

20.3.5 SEND

The SEND component of the user-provided MPCI layer is called when RTEMS
needs to send a packet containing a message to another node. This component
should be prototyped as follows:

void send(node, pkt, pkt_length
unsignedl6 node;
unsigned8 *pkt;
unsigned32 pkt-length;

181

where node is the node number of the destination, pkt is the address of !. packet
which containing a message, and pkt-length is the length of the message in
bytes. If the packet cannot be successfully sent, the fatal error manager should
be invoked.

If node is set to zero, the packet is to be broadcasted to all other nodes in the
system. Although some MPCI layers will be built upon hardware which support
a broadcast mechanism, others may be required to generate a copy of the packet
for each node in the system.

Many MPCI layers use the pkt-length to avoid sending unnecessary data. This
is especially useful if the media connecting the nodes is relatively slow.

20.3.6 Supporting Heterogeneous Environments

Developing an MPCI layer for a heterogeneous system requires a thorough
understanding of the differences between the processors which comprise the
system. One difficult problem is the varying data representation schemes used
by different processor types. The most pervasive data representation problem
is the order of th; bytes which compose a data entity. Processors which place
the least significant byte at the smallest address are classified as little endian
processors. Little endian byte-ordering is shown below:

Byte3 Byte2 Byte, Byte O

Conversely, processors which place the most significant byte at the smallest
address are classified as big endian processors. Big endian byte- ordering is
shown below:

IRyte0 Byte Byte2 Byte3

Unfortunately, shai ing a data structure between big endian and little endian
processors requires translation into a common endian format. An application
designer typically chooses the common endian format to minimize conversion
overhead.

Another issue in the design of shared data structures is the alignment of data
structure elements. Alignment is both processor and compiler implementation
dependent. For example, some processors allow data elements to begin on any
address boundary, while others impose restrictions. Common restrictions are
that data elements must begin on either an even address or on a long word

182

boundary. Violation of these restrictions may cause an exception or impose a
performance penalty.

Other issues which commonly impact the design of shared data structures
include the representation of floating point numbers, bit fields, decimal data,
and character strings. In addition, the representation method for negative
integers could be one's or two's complement. These factors combine to increase
the complexity of designing and manipulating data structures shared between
processors.

RTEMS addressed these issues in the design of the packets used to
communicate between nodes. The RTEMS packet format is designed to allow
the MPCI layer to perform all necessary conversion without burdening the
developer with the details of the RTEMS packet format. As a result, the MPCI
layer must be aware of the following:

" All packets must begin on a long-word bounday.

" Packets are composed of both RTEMS and application data. All
RTEMS data is unsigned32 and is located in the first
MINHETEROCONV unsigned32"s of the packet.

* The RTEMS data component of the packet must be in native
endan format. Endian con version may be performed by either
the sending or receiving MPCI layer.

* RTEMS makes no assumptions regarding the application data
component of the packet.

20.4 Operations

20.4.1 Announcing a Packet

The mpannounce directive is called by the MPCI layer to inform RTEMS that
a packet has arrived from another node. This directive can be called from an
interrupt service routine or from within a polling routine.

20.5 Directives

This section details the additional directives required to support RTEMS in a
multiprocessor configuration. A subsection is dedicated to each of this
manager's directives and describes the calling sequence, related constants,
usage, and status codes.

183

20.5.1 MPANNOUNCE - Announce the arrival of a packet

CALLING SEQUENCE:
void mpannounce ()

INPUT: NONE

OUTPUT: NONE

DIRECTIVE STATUS CODES: NONE

DESCRIPTION:

This directive informs RTEMS that a multiprocessing communications packet
has arrived from another node. This directive is called by the user-provided
MPCI, and is only used in multiprocessor configurations.

NOTES:

This directive is typically called from an ISR.

This directive will not cause the calling task to be preempted.

This directive does not generate activity on remote nodes.

184

A

Memory Requirements

A.1 Data Space Requirements

RTEMS requires a small amount of memory for its private variables. This data
area must be in RAM and is separate from the RTEMS RAM Workspace. The
following table illustrates the data space required for all configurations of
RTEMS:

Component Size

Data Space 800

A.2 Minimum and Maximum Code Space Requirements

A maximum configuration of RTEMS includes the core and all managers
including the multiprocessing manager. Conversely, a minimum configuration
of RTEMS includes only the core and the following managers: initialization,
task, interrupt and fatal error. The following table illustrates the code space
required by these configurations of RTEMS:

Configuration Size

Minimum 7,296

Maximum 19,868

A-1

A.3 Code Space Worksheet

Component Included Not Included Size

Core 2864 n/a

Initialization 1184 n/a

Task 3080 n/a

Interrupt 52 n/a

Fatal Error 32 n/a

Time 2424 8

Semaphore 1064 8

Message 1920 8

Event 604 8

Signal 452 8

Partition 1124 8

Region 1072 8

Dual Ported 720 8
Memory

I/0 112 8

Multiprocessing 3164 12

[otal Code Space Requirements[

A-2

A.4 RTEMS RAM Workspace Worksheet

Description Equation Bytes Required

max-tasks * 268 =

max-semaphores * 56 =

max-timers * 36 =

maxqueues *72 =

max-messages *24 =

max-regions *96 =

max-partitions *52 =

max-dpmern 32 =

FP Tasks 108 =

Task Stacks

(Total Single Processor RequirementsJ

max-nodes * 48 =

max-gobjects * 12 = j
max-proxies I* 76 =

jTotal Multiprocessing Requirements II
Fixed System Requirements 4428

Total Single Processor Requirements ___________

Total Multiprocessor Requirements

IMinimum Bytes for RTEMS Workspace[J

A-3/(A-4 blank)

B

DIRECTIVE STATUS CODES

CONSTANT CODE DESCRIPTION
SUCCESSFUL 0 successful completion

EEXITTED 1 returned from a task
E-NOMP 2 multiprocessing not configured

E-NAME 3 invalid object name
EID 4 invalid object id

ETOOMANY 5 too many

ETIMEOUT 6 timed out waiting
E.DELETE 7 object was deleted while waiting

ESIZE 8 invalid specified size

EADDRESS 9 invalid address specified

E.NUMBER 10 number was invalid
ENOTDEFINED 11 item not initialized

EINUSE 12 resources outstanding
EUNSATISFIED 13 request not satisfied

E-STATE 14 task is in wrong state

EJALREADY 15 task already in state

ESELF 16 illegal for calling task
EREMOTE 17 illegal for remote object
ECALLED 18 invalid environment

E.PRIORITY 19 invalid task priority

E-CLOCK 20 invalid time buffer

ENODE 21 invalid node id

E.NOTCONFIGURED 22 directive not configured
ENOTIMPLEMENTED 23 directive not implemented

B-1/(B-2 blank)

C

HEADER FILES

C.1 Header File Usage

RTEMS is distribuLed with a single C header file, rtems.h, which contains all
structure and macro definitions needed to utilize RTEMS. This header file must
be included by all C modules which utilize RTEMS. It contains type definitions,
NULL pointer definitions, directive status codes, RTEMS data structures, flag
and mode definitions, event and signal sets, task manager related definitions,
and the prototypes for the entries in the C language interface library.

C.2 rtems.h

/* rtems.h

* This include file contains infui:.ition about the
* executive that is needed by the application.

#ifndef RTEMS h

#define RTEMS h

/* processor dependent type definitions *1

typedef unsigned char unsigned8; /* unsigned 8-bit value */
typedef unsigned short unsignedl6; /* unsigned 16-bit value */
typedef unsigned int uncigned32; /* unsigned 32-bit value */

/* RTEMS dependent type definitions */

typedef void task; /* RTEMS task
typedef task (*taskptr)(); /* task pointer */
typedef void (*proc_ptr)(); /* procedure ptr */
typedef void (*asrptr)(); /* ASR pointer */
typedef unsigned32 obj name; /* object name
typedef unsigned32 obj-id; /* object id
typedef unsigned32 dir status; /* directive status*/
typedef unsigned32 tasK mode; /* task mode
typedef unsigned32 task pri; /* task priority */

C-I

typedef unsigned32 interval; /* tick interval */
typedef unsigned32 event set; /* event set
typedef unsigned32 signalset; /* signal set

typedef struct t ctlblk t cb; /* task control */
typedef struct time info time buffer; /* date/time info */
typedef struct ext Info ext Eable; /* user extensions *1
typedef struct driver info drivertable; /* driver table */
typedef struct itasks -info itasks-table; /* init tasks
typedef struct mpci info mpci table; /* MPCI entries */
typedef struct config_info config_table; /* config table */
typedef struct mp_info mp_table; /* mp config table */

/* RTEMS directive completion statuses */

#define SUCCESSFUL 0 /* successful completion
#define E EXITTED 1 /* returned from a task
#define ENOMP 2 /* multiprocessing not

/-t configured */
#define E NAME 3 1* invalid object name
#define EID 4 /* invalid object id
#define E-TOOMANY 5 /* too many
#define E-TIMEOUT 6 /* timed out waiting
#define EDELETE 7 /* object was deleted

/* while waiting
#define E SIZE 8 /* invalid specified size */
#define E-ADDRESS 9 /* invalid address specified */
Idefine E-NUMBER 10 /* number was invalid
#define E-NOTDEFINED 11 /* item not initialized
#define E-INUSE 12 /* resources outstanding
#define E-UNSATISFIED 13 /* request not satisfied */
#define ESTATE 14 /* task is in wrong state
#define E-ALREADY 15 /* task already in state
#define E-SELF 16 /* illegal for calling task */
#define EREMOTE 17 /* illegal for remote object */
define E-CALLED 18 /* invalid environment */
#define E-PRIORITY 19 /* invalid task priority
#define E-CLOCK 20 /* invalid date/time
#define E-NODE 21 /* invalid node id
#define ENOTCONFIGURED 22 /* directive not configured */
define E-NOTIMPLEMENTED 23 /* directive not implemented */

/* Task states */

#define TS READY OxOOO /* ready to run
#define TS DORMANT OxOO1 /* created, not started
#define TS-SUSPEND 0x002 /* wait to be resumed */
#define TS-TRANSIENT 0x004 /* task in transition
#define TS-DELAY 0x008 /* wait for timeout
#define TS-WAITSEGMENT OxOlO /* wait for segment
#define TS-WAITMESSAGE 0x020 /* wait for message
#define TS-WAITEVENT 0x040 /* wait for event
#define TS-WAITSEMAPHORE 0x080 /* wait for semaphore
#define TS-WAITTIME 0xl00 /* wait for date and time */
#define TS-WAITRPCREPLY 0x200 /* wait for rpc reply

/* defaults for attributes or options */

#define DEFAULTS OxOOOOOOOO /* all default options

C-2

/* attribute constants *

#define NOFP OX00000000 /* no floating point unit *
#define FP OX00000001 /* floating point unit

#define LOCAL Ox00000000 /* local object
#define GLOBAL 0x00000002 /* global object *

fdefine FIFO Ox00000000 /* process in FIFO order *
#define PRIORITY 0x00000004 1* process by priority

#define NOLIMIT Ox00000000 1* do not place a limit

#define LIMIT 0X00000008 /* limit queue entries

/* options constants */

#define WAIT Ox00000000 1* wait for completion
#define NOWAIT Ox00000001 /* do not wait on resource *

#define EV -ALL Ox00000000 1* wait for all event(s) *
#define EV-ANY 0x00000002 /* wait for any event(s)

/* mask constants */

#define PREEMPTMODE OxOOOO0lOQ 1* preemption bit
#define TSLICEMODE 0x00000200 1* tslice bit *
#define ASRMODE 0x00000400 1* ASR enable bit
#define INTRMODE 0x00000007 1* interrupt mode bits *

/* mode constants */

#define PREEMPT OxOOOOOOOO /* enable preemption
#define NOPREEMPT OxOOOO0lOO /* disable preemption

#define NOTSLICE OxOOOOOOOO /* disable timeslicing
#define TSLICE 0x00000200 /* enable timeslicing

#define ASR OxOOOOOOOO /* enable ASR
#define NOASR 0x00000400 /* disable ASR *

#define INTR(level) (level&0x7) /* interrupt level

1* null constants */

#define NULL PACKET (unsigned8 *) 0
#define NULL DP ADDRESS (unsigned8 *) 0
#define NULL TASK (task-ptr) 0
#define NULLASR (asr ptr) 0
#define NULLDRIVER (proc-ptr) 0
#define NULL DRIVER TABLE (driver table *)0
#define NULL ITASKS TABLE (itasks table *)0
#define NULL EXT TABLE (ext table *) 0
#define NULL_-EXTENSION (proc_ptr) 0
#define NULL -MPCI TABLE (mpci table *) 0
#define NULLMPTABLE (mp-table *) 0

/* Identification constants */
#define ALL NODES 0 /* search all nodes *
#define OTHER NODES Oxfffffffe /* search all except local *
#define LOCAL -NODE Oxffffffff /* only local node
#define WHO AM I 0 /* calling task

C-3

/* miscellaneous constants */

#define CURRENT 0 /* current mode/priority *
#define NOTIMEOUT 0 /* wait indefinitely
#define SELF 0 /* current task *
#define YIELD 0 /- yield CPU (tin wkafter) *
#define MIN PRIORITY 1 /* highest task p riority *
#define MAX -PRIORITY 255 /* lowest task priority *
#define MIN-STKSIZE 256 /* minimum task stack size *

/* definitions for event set */

#define EVENT_0 OX00000001
#define EVENT 1 0x00000002
#define EVENT_2 0x00000004
#define EVENT_3 0x00000008
#define EVENT_4 OX00000010
#define EVENT_5 0x00000020
#define EVENT_6 0x00000040
#define EVENT_7 0X00000080
#define EVENT_8 OX00000100
#define EVENT 9 0x00000200
#define EVENT 10 0x00000400
#define EVENT_11 0x00000800
#define EVENT_12 0X00001000
#define EVENT_13 0x00002000
#define EVENT_14 0x00004000
#define EVENT_15 OX00008000
#define EVENT 16 OX00010000
#define EVENT -17 0x00020000
#define EVENT_-18 0x00040000
#define EVENT_19 0x00080000
#define EVENT_20 OX00100000
#define EVENT_21 0x00200000
#define EVENT_22 0x00400000
#define EVENT_23 0X00800000
#define EVENT_24 OX01000000
#define EVENT 25 0x02000000
#define EVENT_26 0x04000000
#define EVENT_27 Ox08000000
#define EVENT_28 0x10000000
#define EVENT_29 0x20000000
#define EVENT_30 0x40000000
#define EVENT_31 0X80000000

/* definitions for signal set *

#define SIGNAL_0 OX00000001
#define SIGNAL_1 0x00000002
#define SIGNAL_2 0x00000004
#define SIGNAL_3 0x00000008
#define SIGNAL_-4 Ox00000010
#define SIGNAL_5 0x00000020
#define SIGNAL_6 0x00000040
#define SIGNAL_7 0x00000080
#define SIGNAL_8 OX00000100
Idefine SIGNAL_9 0x00000200
#define SIGNAL_10 0x00000400
#define SIGNAL_11 0x00000800
#define SIGNAL-12 Ox00001000

C-4

#define SIGNAL 13 0x00002000
#define SIGNAL-14 0x00004000
#define SIGNAL-15 0x00008000
#define SIGNAL716 Ox00010000
#define SIGNAL 17 0x00020000
#define SIGNAL 18 0x00040000
#define SIGNAL 19 0x00080000
#define SIGNAL-20 Ox00100000
#define SIGNAL 21 0x00200000
#define SIGNAL 22 0x00400000
#define SIGNAL 23 0x00800000
#define SIGNAL 24 Ox01000000
#define SIGNAL 25 0x02000000
#define SIGNAL 26 0x04000000
#define SIGNAL 27 0x08000000
#define SIGNAL-28 Ox10000000
#define SIGNAL 29 0x20000000
#define SIGNAL 30 0x40000000
#define SIGNAL-31 0x80000000

/* notepad location definitions */

#define NOTEPAD 0 0
#define NOTEPAD-I 1
#define NOTEPAD-2 2
#define NOTEPAD-3 3
#define NOTEPAD-4 4
#define NOTEPAD--5 5
#define NOTEPAD 6 6
#define NOTEPAD 7 7
#define NOTEPAD 8 8
#define NOTEPAD 9 9
#define NOTEPAD 10 10
#define NOTEPAD ii 11
#define NOTEPAD 12 12
#define NOTEPAD 13 13
#define NOTEPAD 14 14
#define NOTEPAD-15 15

/* Multiprocessing constants */

#define MINPKTSIZE 64 /* MPCI layer must support */
/* packets = this size

/* The following constant defines the number of unsigned32's
* in a pkt which must be converted to native format in a
* heterogeneoils system. In packets longer than
* MIN HETERO CONV unsi[ned32's, the "extra" data is a
* message buffer.

#define MIN HETEX7O CONV 7

/* macros to access sub-fields in an object id */

#define Node(id) (id > 16) /* MSW = local node id */
#define -object(id) (id & 0xffffi /* LSW = object's id */

#define Build name(N, Cl, C2, C3, C4) \
*(N) = Ret name(C1,C2,C3,C4

C-5

Aefine Retname(CI, C2, C3, C4) (Cl < 24 1 C2 < 16 C3 < 8

/* structures */

/* date/time */

struct time info {
unsignedl6 year; /* year, A.D. */
unsigned8 month; /* month, 1 - 12
unsigned8 day; /* day, 1 - 31 */
unsignedl6 hour; /* hour, 0 - 23 */
unsigned8 minute; /* minute, 0 - 59 */
unsigned8 second; /* second, 0 - 59 */
unsigned32 ticks; /* elapsed ticks between secs */

/* 180386 registers */

struct registe-s {
unsigned32 il_esp; /* task's stack pointer; other */

/* registers pushed on stack */
/* using "pushad"

1;

/* task control block */

struct t ctlblk {
t cb *next; /* pointer to next TCB */
t-cb *prev; /* pointer to previous TCB */
objid tid; /* task identification
obj name name; /* task name */
unsigned32 state; /* task state */
taskpri priority; /* current task priority */
unsigned8 reserved[128]; /* reserved for RTEMS *1
task mode mode; /* current task mode */
unsigned32 attributes; /* task attributes */
struct registers Regs; /* 180386 register save area
unsigned8 *fp_context; /* pointer to FP context area *1
unsigned32 notepad[16]; /* executive notepads */
unsigned8 *extension; /* pointer TCB extension */

1;

/* init task(s) information */

struct itasksinfo {
obj name name; /* task name */
unsigned32 stksize; /* task stack size */
task pri priority; /* task priority
unsigned32 attributes; /* task attributes */
task ptr entrypoint; /* task entry point */
task-mode mode; /* task initial mode */
unsigned32 arg; /* task argument */

/* device driver table */

struct driver info {
procptr Tnit; /* initialization procedure */
proc_ptr open; /* open request procedure *1
procptr close; /* close request procedure */

C-6

procptr read; /* read request procedure */
proc_ptr write; /* write request procedure */
procptr cntrl; /* special requests procedure */
unsigned32 reservedl; /* reserved for RTEMS
unsigned32 reserved2; /* reserved for RTEMS

1;

/* user extensions table */

struct ext info {
proc_ptr-tcreate; /* tcreate user extension
procptr tstart; /* tstart user extension */
procptr trestart; /* trestart user extension */
procptr tdelete; /* tdelete user extension */
proc_ptr tswitch; /* tswitch user extension
procptr taskexitted; /* task exitted user extension*/
procptr fatal; /* fatal error user extension */

1;

/* multiprocessor communications interface table */

struct mpci info {
procptr init; /* initialization procedure */

proc_ptr getpkt; /* get packet procedure
procptr retpkt; /* return packet procedure */
procptr send; /* packet send procedure
procptr receive; /* packet receive procedure */

/* multiprocessor configuration table */

struct mp info {
unsignedl6 node; /* local node number */
unsignedl6 max nodes; /* number nodes in system
unsigned32 max-gobjects; /* maximum global objects
unsigned32 max proxies; /* maximum proxies
mpcitable *Mpcitbl; /* MPCI table

/* configuration table *1

struct config_info {
unsigned32 exec-ram; /* RTEMS work area */
unsigned32 ram-size; /* RTEMS work area size
unsignedl6 max -tasks; /* max number tasks
unsignedl6 max semaphores; /* max number semaphores */
unsignedl6 max timers; /* max number timers
unsignedl6 max_queues; /* max number queues
unsignedl6 max messages; /* max number messages */
unsignedl6 max regions; /* max number regions
unsignedl6 max partitions; /* max number partitions */

unsignedl6 max dpmems; /* max dp memory areas
unsignedl6 ms tick; /* number ms in a tick
unsignedl6 tsiice; /* ticks in a timeslice
unsigned32 num itasks; /* number init tasks
itasks table *Itasks tbl: /* init tasks table
unsigned32 num devices; /* number device drivers
driver table *Drv-tbl; /* device driver table
ext table *Ext-tbl; /* user extension table
mp_table *Mptbl; /* MP config table
;

C-7

1* C interf ace Definitions *

" The following macros are used to map user directive
" names to the C Interface entry points. The exact
" names of the C Interface entry points may vary
" between compilers.

#define as catch CAs catch
#define as-send C-As send

#define de close C De close
#define de cntrl c De cntrl
#define de mnit CDe mnit
#define de-open C De open
#define de read C De read
#define dewYrite C De-write

#define dp_2external CDp 2external
#define dp_2internal CDp-2internal
#define dpcreate C Dp create
#define dp _delete CDp delete
#define dpident cDpident

#define ev receive C Ev receive
#define ev-send C Evesend

#define mnit exec C mnit exec

#define pt -create CPt create
#define pt -delete C Pt delete
#define pt-getbuf C-Pt-getbuf
#define pt _ident C Pt-ident
#define ptretbuf CPt-retbuf

#define q_broadcast CQ broadcast
#define q create C Qcreate
#define q-delete CQCdelete
#define q flush 6Cflush
#define qident CQ ident
#define greceive c-receive
#define q_send cCsend
#define q_urgent C-Q-urgent

#define rn create C Rn create
#define rn-delete C Rn delete
#define rn getseg C-Rn-getseg
#define rn ident C Rn ident
#define rn-retseg C-Rn-retseg

#define sm create C Sm create
#define sm -delete C-Sm delete
#define sin ident C-Smjident
#define am -p C-hm-p
#define sin-v C-SM v

#define t create C T-create
#define t -delete C-T delete
#define t-getnote CIT-getnote

C-8

#define t ident C T ident
#define tmode C-Tmode-
#define t restart --_T restart
#define tresune CT-resume
#define t-setpri CT-setpri
#define t setnote C T setnote
#define t start C-T-start
#define t-suspend CT-suspend

#define tm cancel C Tin cancel
#define tm _evafter C-TfCevafter
#define tm -evevery C Tin evevery
#define tm -evwhen C-Tinevwhen
#define tm -get CTm-get
#define tin- set C Tm set
idefine tm tick C Tm tick
#define tm wkafter C-Tm-wkafter
#define tm wkwhen C Tm wkwhen

#define k-fatal CK-fatal

#define mp-announce CMp-announce

1* C Language Directive Prototypes *

dir status C As catcho;
dir-status CAs-seid();

dir status C De closeo;
dir-status C De cntrl();
dir-status C De init();
dir status C De openo;
dir-status C De reado;
dir-status CDe-writeo;

dir status CDp_2external();
dir -status CDp_2internal();
dir -status C Dp created;
dir status C-Dp deleteo;
dir-status C_Dp~identoj;

dir status C Ev receives;
dir-status CEv-send();

void C-Init-execo;

dir status C Pt createo;
dir status C Pt-deleteo;
dir status CPt getbuf o;
dir-status C Pt idento;
dir-status C-Pt-retbuf (;

dir status C Q broadcasto;
dir-status C-create o;
dir status C Q deleted;
dir-status C-0flusho;
dir-status C-Qident();
dir status C receive();
dir-status CQ~send();
dir-status C Q urgent();

C-9

dir -status C Rn createo;
dirBstatus CRn-deleteo;
dir -status C-Rngetsego;
dir status C Rnidento;
dir-status CRniretseg(;

dir status C Sm created;
dir -status Csm deleteo;
dir status C-Sm idento;
dir-status C smp();
dir-status cSmVO);

dir status CT created;
dir-status CT-deleted;
dir -status CT getnoteo;
dir -status c T -idento;
dir status c~imodeo;
dir'-status c T -restarto;
dir-status c-Tresuneo;
dir status CT setprio;
dir-status CT-setnoteo;
dir-status C-T start();
dir-status CT-suspendo;

dir -status CTm cancel();
dir status CTm evaftero;
dir-status C Tm eveveryo;
dir -status C-Tm evwheno;
dir-status CTm-get();
dir status C 7Tm seto;
dir-status C-Tmtickfl;
dir status CTrn-wkafter 0 ;
dir-status C-Tm-wkwheno;

void CK-fatal();

void CHp_announced;

#endif

1* end of include file *

c-.10

D

EXAMPLE APPLICATION

/* example.c

* This file contains an example of a simple RTEMS
* application.' It contains a Configuration Table, a
* user initialization task, and a simple task.

* This example assumes that a board support package exists
* and invokes the in executive() directive. The board
* support package also provides the function Task exitted()
* for the task exitted user-supplied routine.

#include "rtems.h"

task init task(;

struct itasks info init task = {
{ 0x61626300, /* init task name "ABC"

1024, /* init task stack size
1, /* init task priority */
DEFAULTS, /* init task attributes
init task, /* init task entry point
TSLICE, /* init task initial mode
0, /* init task argument

)
I;

struct configtbl Config tbl = {
0x0f0000, 7* exective RAM work area
65536, /* exective RAM size
2, /* maximum tasks
0, /* maximum semaphores
0, /* maximum timers
0, /* maximum message queues */
0, /* maximum messages */
0, /* maximum regions
0, /* maximum partitions
0, /* maximum dp memory areas */
10, /* number of ms in a tick
1, /* num of ticks in a timeslice */

D-1

1, /* number of user init tasks */
init task tbl, /* user init task(s) table
0, /* number of device drivers */
NULL DRVER TABLE, /* ptr to driver address table */
NULL EXT TABLE, /* ptr to extension table */
NULL-MP TABLE, /* ptr to MP config table */

task userapplication();

#define USERAPPNAME 1 /* any 32-bit name; unique helps */

task inittask()
{
obj id tid;

/* example assumes SUCCESSFUL return value */
t create(USER APP NAME, 1, 1024, NOPREEMPT, FP, &tid);
t-start(app_tfd, userapplication, 0);
t_delete(SELF);

task userapplication()
{

/* application specific initialization goes here */

while (1) { /* infinite loop */
/* APPLICATION CODE GOES HERE

* This code will typically include at least one
* directive which causes the calling task to
* give up the processor.
*/

}

D-2

E

GLOSSARY
active A term used to describe an object which has been created

by an application.

application In this document, software which makes iise of RTEMS.

ASR see Asynchronous Signal Routine.

asynchronous Not related in order or timing to other occurrences in the
system.

Asynchronous Similar to a hardware interrupt except that it is associated
Signal Routine with a task and is run in the context of a task. The directives

provided by the signal manager are used to service signals.

awakened A term used to describe a task that has been unblocked and
may be scheduled to the CPU.

big endian A data respresentation scheme in which the bytes
composing a numeric value are arranged such that the most
significant byte is at the lowest address.

bit-mapped A data encoding scheme in which each bit in a variable is
used to represent something different. This makes for
compact data representation.

block A physically contiguous area of memory.

blocked The task state entered by a task which has been previously
started and cannot continue execution until the reason for
waiting has been satisfied.

E-1

broadcast To simultaneously send a message to a logical set of

destinations.

BSP see Board Support Package.

Board Support A collection of device initialization and control routines
Package specific to a particular type of board or collection of boards.

buffer A fixed length block of memory allocated from a partition.

Central This term is equivalent to the terms processor and
Processing Unit microprocessor.

chain A data structure which allows for efficient dynamic addition
and removal of elements. It differs from an array in that it
is not limited to a predefined size.

coalesce The process of merging adjacent holes into a single larger
hole. Sometimes this process is referred to as garbage
collection.

Configuration A table which contains information used to tailor RTEMS
Table for a particular application.

context All of the processor registers and operating system data
structures associated with a task.

context switch Alternate term for task switch. Taking control of the
processor from one task and transferring it to another task.

control block A data structure used by the executive to define and control
an object.

core When used in this manual, this term refers to the internal
executive utility functions. In the interest of application
portability, the core of the executive should not be used
directly by applications.

CPU An acronym for Central Processing Unit.

critical section A section of code which must be executed indivisibly.

CRT An acronym for Cathode Ray Tube. Normally used in
reference to the man-machine interface.

E-2

device A peripheral used by the application that requires special
operation software. See also device driver.

device driver Control software fbr special peripheral devices used by the
application.

directives RTEMS' provided routines that provide support
mechanisms for real-time applications.

dispatch The act of loading a task's context onto the CPU and
transferring control of the CPU to that task.

dormant The state entered by a task after it is created and before it
has been started.

Driver Address A table which contains the entry points for each of the
Table configured device drivers.

dual-ported A term used to describe memory which can be accessed at
two different addresses.

embedded An application that is delivered as a hidden part of a larger
system. For example, the software in a fuel-injection.
control system is an embedded application found in many
late-mo(fel automobiles.

envelope A buffer provided by the MPCI layer to RTEMS which is
used to pass messages between nodes in a multiprocessor
system. It typically contains routing information needed by
the MPCI. The contents of an envelope are referred to as a
packet.

entry point The address at which a function or task begins to execute.
In C, the symbolic entry point of a function is the function's
name.

events A method for task communication and synchronization. The
directives provided by the event manager are used to service
events.

exception A synonym for interrupt.

executing The task state entered by a task after it has been given
control of tie CU.

E-3

executive In this document, this term is used to referred to RTEMS.
Commonly, an executive is a small real-time operating
system used in embedded systems.

exported An object known by all nodes in a multiprocessor system.
An object created with the GLOBAL attribute set will be
exported.

external address The address used to access dual-ported memory by all the

nodes in a system which do not own the memory.

FIFO An acronym for First In First Out.

First In First A discipline for manipulating entries in a data structure.
Out

floating point A component used in computer systems to enhance
coprocessor performance in mathematically intensive situations. It is

typically viewed as a logical extension of the primary
processor.

freed A resource that has been released by the application to
RTEMS.

global An object that has been created with the GLOBAL attribute
set and exported to all nodes in a multiprocessor system.

handler The equivalent of a manager, except that it is internal to
RTEMS and forms part of the core. A handler is a collection
of routines which provide a related set of functions. For
example, there is a handler used by RTEMS to manage all
objects.

heap A data structure used to dynamically allocate and deallocate
variable sized blocks of memory.

heterogeneous A multiprocessor computer system comp1 osed of dissimilar
processors.

homogeneous A multiprocessor computer system composed of one type of
processor.

ID An RTEMS assigned identification tag used to access an
active object.

E-4

IDLE task A special low priority task which assumes control of the CPU
when no other task is able to execute.

Instruction A hardware register containing the address of the current
Pointer instruction.

interface A specification of the methodology used to connect multiple
independent subsystems.

internal address The address used to access dual-ported memory by the node
which owns the memory.

interrupt A hardware facility that causes the CPU to suspend
execution, save its status, and transfer control to a specific
location.

interrupt level A mask used to by the CPU to determine which pending
interrupts should be serviced. If a pending interrupt is
below the current interrupt level, then the CPU does not
recognize that interrupt.

Interrupt An ISR is invoked by the CPU to process a pending
Service Routine interrupt.

I/O An acronym for Input/Output.

IP An acronym for Instruction Pointer.

ISR An acronym for Interrupt Service Routine.

kernel In this document, this term is used as a synonym for
executive.

list A data structure which allows for dynamic addition and
removal of entries. It is not statically limited to a particular
size.

little endian A data respresentation scheme in which the bytes
composing a numeric value are arranged such that the least
significant byte is at the lowest address.

local An object which was created without the GLOBAL attribute
set and is accessible only on the node it was created and
resides upon. In a single processor configuration, all objects
are local.

E-5

local operation The manipulation of an object which resides on the same
node as the calling task.

logical address An address used by an application. In a system without
memory management, logical addresses will equal physical
addresses.

loosely-coupled A multiprocessor configuration where shared memory is not
used for communication.

major number The index of a device driver in the Driver Address Table.

manager A group of related RTEMS' directives which provide access
and control over resources.

memory pool Used interchangeably with heap.

message A sixteen byte entity used to communicate between tasks.
Messages are sent to message queues and stored in message
buffers.

message buffer A block of memory used to store messages.

message queue An RTEMS object used to synchronize and communicate
between tasks by transporting messages between sending
and receiving tasks.

Message Queue A data structure associated with each message queue used
Control Block by RTEMS to manage that message queue.

minor number A numeric value passed to a device driver, the exact usage
of which is driver dependent.

mode An entry in a task's control block that is used to determine
if the task allows preemption, timeslicing, processing of
signals, and the processor mode used by the task. If the
mode specifies that the task is in supervisor mode, then an
interrupt level is used.

MPCI An acronym for Multiprocessor Communications Interface
Layer.

multiprocessing The simultaneous execution of two or more processes by a
multiple processor computer system.

E-6

multiprocessor A computer with multiple CPUs available for executing
applications.

Multiprocessor A set of user-provided routines which enable the nodes in a
Communications multiprocessor system to communicate with one another.
Interface Layer

Multiprocessor A table which contains the information needed by RTEMS
Configuration only when used in a multiprocessor configuration.
Table

multitasking The alternation of execution amongst a group of processes
on a single CPU. A scheduling algorithm is used to
determine which process executes ta which time.

mutual A term used to describe the act of preventing other tasks
exclusion from accessing a resource simultaneously.

nested A term used to describe an ASR that occurs during another
ASR or an ISR that occurs during another ISR.

node A term used to reference a processor running RTEMS in a
multiprocessor system.

non-existent The state occupied by an uncreated or deleted task.

numeric A component used in computer systems to enhance
coprocessor performance in mathematically intensive situations. It is

typically viewed as a logical extension of the primary
processor.

object In this document, this term is used to refer collectively to
tasks, message queues, partitions, regions, semaphores, and
timers.

object-oriented A term used to describe systems with common mechanisms
for utilizing a variety of entities. Object-oriented systems
shield the application from implementation details.

operating The software which controls all the computer's resources
system and provides the base upon which application programs can

be written.

overhead The portion of the CPUs processing power consumed by the
operating system.

E-7

packet A buffer which contains the messages passed between nodes
in a multiprocessor system. A packet is the contents of an
envelope.

partition An RTEMS object which is used to allocate and deallocate
fixed size blocks of memory from an dynamically specified
area of memory.

Partition A data structure associated with each partition used by
Control Block RTEMS to manage that partition.

PC An acronym for Program Counter.

pending A term used to describe a task blocked waiting for an event,
message, semaphore, or signal.

physical address The actual hardware address of a resource.

poll A mechanism used to determine if an event has occurred by
periodically checking for a particular status. Typical events
include arrival of data, completion of an action, and errors.

pool A collection from which resources are allocated.

portability A term used to describe the ease with which software can
be rehosted on another computer.

posting The act of sending an event, message, semaphore, or signal
to a task.

preempt The act of forcing a task to relinquish the processor and
dispatching to another task.

priority A mechanism used to represent the relative importance of
a set of items.

Program A hardware register containing the address of the current
Counter instruction.

Program Status A microprocessor register typically containing the processor
Register execution mode, interrupt level, trace mode, and condition

codes.

proxy An RTEMS control structure used to represent, on a remote
node, a task which must block as part of a remote operation.

E-8

Proxy Control A data structure associated with each proxy used by RTEMS

Block to manage that proxy.

PSR An acronym for Program Status Register.

PTCB An acronym for Partition Control Block.

PXCB An acronym for Proxy Control Block.

quantum The application defined unit of time in which the processor
is allocated.

queue Alternate term for message queue.

A data structure managed using the FIFO discipline.

QCB An acronym for Message Queue Control Block.

ready A task occupies this state when it is available to be given
control of the CPU.

real-time A term used to describe ,ystems which are characterized by
requiring def icninistic response times to external stimuli.
The external stimuli require that the response occur at a
precise Lime or the rpsponse is incorrect.

reentrant A term used to describe routines which do not modify
themselvL3 or global variables.

region An RTEMS object which is used to allocate and deallocate
variable size blocks of memory from a dynamically specified
area of memory.

Region Control A data structure associated with each region used by
Block RTEMS to manage that region.

registers Registers are locations physically located within a
component, typically used for device control or general
purpose storage.

remote Any object that does not reside on the local node.

remote The manipulation of an object which does not reside on the
operation same node as the calling task.

E-9

return code Also known as error code or return value.

resource A hardware or software entity to which access must be
controlled.

resume Removing a task from the suspend state. If the task's state
is ready following a call to the t..resume directive, then the
task is available for scheduling.

return code An value returned by RTEMS directives to indicate the

completion status of the directive.

RNCB An acronym for Region Control Block.

round-robin A task scheduling discipline in which tasks of equal priority
are executed in the order in which they are made ready.

RS-232 A standard for serial communications.

schedule The process of choosing which task should next enter the
executing state.

segments Variable sized memory blocks allocated from a region.

semaphore An RTEMS object which is used to synchronize tasks and
provide mutually exclusive access to resources.

Semaphore A data structure associated with each semaphore used by
Control Block RTEMS to manage that semaphore.

shared memory Memory which is accessible by multiple nodes in a
multiprocessor system.

signal An RTEMS provided mechanism to communicate
asynchronously with a task. Upon reception of a signal, the
ASR of the receiving task will be invoked.

signal set A thirty-two bit entity which is used to represent a task's
collection of pending signals and the signals sent to a task.

SMCB An acronym for Semaphore Control Block.

SR An acronym for Status Register.

E-10

stack A data structure that is managed using a Last In First Out
(LIFO) discipline. Each task has a stack associated with it
which is used to store return information and local
variables.

status code Also known as error code or return value.

status register A microprocessor register typically containing the processor
execution mode, interrupt level, trace mode, and condition
codes.

suspend A term used to describe a task that is not competing for the
CPU because it has had a t-suspendO directive.

synchronous Related in order or timing to other occurrences in the
system.

system call In this document, this is used as an alternate term for
directive.

target The system on which the application will ultimately
execute.

task A logically complete thread of execution. The CPU is
allocated among the ready tasks.

Task Control A data structure associated with each task used by RTEMS
Block to manage that task.

task switch Alternate terminology for context switch. Taking control of
the processor from one task and given to another.

TCB An acronym for Task Control Block.

tick The basic unit of time used by RTEMS. It is a
user-configurable number of milliseconds. The current tick
expires when the tmintick directive is invoked.

tightly-coupled A multiprocessor configuration system which
communicates via shared memory.

timeout An argument provided to a number of directives which
determines the maximum length of time an application task
is willing to wait for the directive to complete.

E-11

timer An RTEMS object used to send events to the calling tasks
at a later time.

Timer Control A data structure associated with each timer used by RTEMS
Block to manage that timer.

timeslicing A task scheduling discipline in which tasks of equal priority
are executed for a specific period of time before being
preempted by another task.

timeslice The application defined unit of time in which the processor

is allocated.

TMCB An acronym for Timer Control Block.

user extensions Software routines provided by the application to enhance
the functionality of RTEMS.

User Extension A table which contains the entry points for each user
Table extensions.

User A table which contains the information needed to create and
Initialization start each of the user initialization tasks.
Task Table

user-provided Alternate term for user-supplied. This term is used to
designate any software routines which must be written by
the application designer.

user-supplied Alternate term for user-provided. This term is used to
designate any software routines which must be written by
the application designer.

vector Memory pointers used by the processor to fetch the address
of routines which will handle various exceptions and
interrupts.

wait queue The list of tasks blocked pending the release of a particular
resource. Message queues, regions, and semaphores have a
wait queue associated with them.

yield When a task voluntarily releases control of the processor.

E- 12

INITIAL DISTRIBUTION

Copies

U.S. Army Materiel System Analysis Activity
ATTN: AMXSY-MP (Herbert Cohen) 1
Aberdeen Proving Ground, MD 21005

ITT Research Institute
ATTN: GACIAC 1
10 W. 35th Street
Chicago, IL 60616

WL/MNAG
ATTN: Chris Anderson 1
Eglin AFB, FL 32542-5434

Naval Weapons Center
Missile Software Technology Office
Code 3901C, ATTN: Mr. Carl W. Hall I
China Lake, CA 93555-6001

On-line Applications Research
3315 Memorial Parkway, SW 3
Huntsville, AL 35801

CEA Incorporated
Blue Hills Office Park
150 Royall Street
Suite 260, ATTN: Mr. John Shockro 1
Canton, MA 01021

VITA
10229 N. Scottsdale Rd
Suite B, ATTN: Mr. Ray Alderman 1
Scottsdale, AZ 85253

Westinghouse Electric Corp.
P.O. Box 746 - MS432
ATTN: Mr. Eli Solomon 1
Baltimore, MD 21203

Dept. of Computer Science B-173
Florida State University
ATTN: Dr. Ted Baker 1
Tallahassee, FL 32306-4019

DSD Laboratories
75 Union Avenue
ATTN: Mr. Roger Whitehead 1
Studbury, MA 01776

DIST-1

Copies
AMSMI - RD

1AMSMI-RD-GS, Dr. Paul Jacobs 1AMSMI-RD-GC-S, Gerald E. Scheiman 1
Wanda M. Hughes 5

ASIR-A Phillip Acuff 4
AMSMI-RD-BA-C3, Bob Christian1
AMSMI -RD-SS1
AMSMI -RD -CS-R 15AMSMI -RD-CS-T

1AMSMI-GC-Ip, Mr. Fred M. Bush 1

CSSD-CR-S, Mr. Frank Poslajko 1

SFAE-FS-ML-TM, Mr. Frank Gregory 1SFAE-AD-ATA-SE, Mr. Julian Cothran I
Mr. John Carter 1

DIST-2
*~U.S. GOVERNMENT PRINTING OFFICE 1992 - 631-100/'60223

